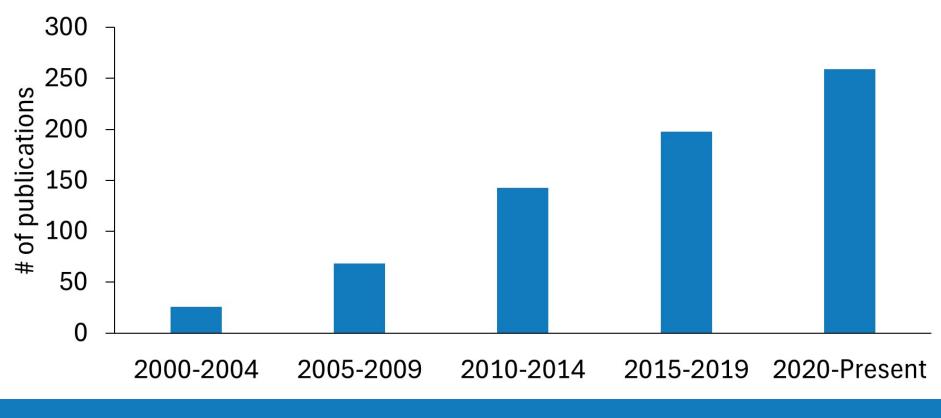


# Assessing accuracy and validity of assays from commercial feed analysis laboratories


#### Nicole Schlau

R&D Manager, Dairyland Laboratories, Inc





#### Trends in Commercial Laboratory Use by JDS Studies



## **Objectives**

Understand how a commercial laboratory:

- Monitors and corrects systemic error
- Identifies error in individual samples
- Understand how factors outside the lab affect interpretation of results
- Discuss contribution of NIR data to feed composition databases for atypical feeds
- Review examples to interpret outliers and distinguish error from true variation

## Method matters!

Empirical vs. rational methods (Ferreira and Thiex, 2022)

- Results determined by a specific method (empirical)
- Quantification of a specific analyte (rational)

#### Most feed analyses are empirical

- DM
- Fiber: ADF, NDF
- Fat: EE
- Ash or organic matter
- WSC, ESC

## Monitoring systemic error

Participation in proficiency testing programs

- National Forage Testing Association (NFTA)
- Association of American Feed Control Officials (AAFCO)

#### Participation in ring test studies (Hristov et al., 2010, Hall and Mertens, 2012; many others)

Internal quality control samples

### Where does analytical error begin?

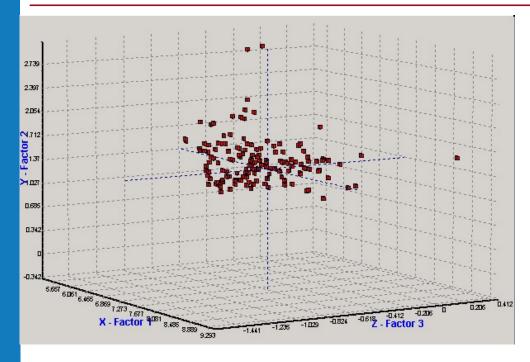
Improper sampling technique

Improper handling



Sample identification, classification and preparation

## Role of NIR in Feed Analysis


Near-infrared reflectance spectroscopy

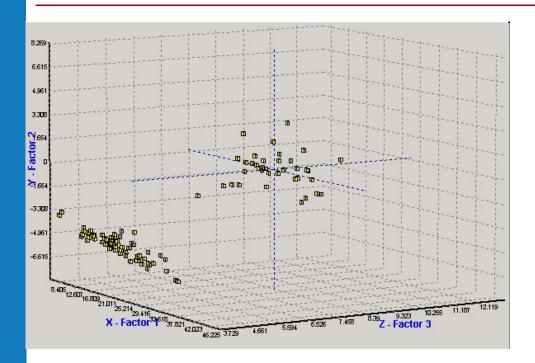
Secondary analytical measurement

- Calibrated from chemistry
- ~90% of Dairyland Laboratories' database (2021-present) contains NIR data
  - Either alone or alongside chemistry packages (ex. minerals, digestibility)

| ACCOUNT NAME NEAL WININGER                                                                                                          |                    |                                 |                                                                                              |                                |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------|----------------------------------------------------------------------------------------------|--------------------------------|
| Sampled For DAVENLAND FARMS                                                                                                         |                    | _Address_ALCAC                  | NA W1 54                                                                                     | 612                            |
| Addtl Email Copies:                                                                                                                 |                    | Account Contact Ph#             |                                                                                              |                                |
| NIR Calibrations are available on the following pri-<br>Hey Com Stage 73.61 Com Gluten Feed Wit                                     | oduots:            | Sample Description              | Sample Description                                                                           | Sample Description             |
|                                                                                                                                     |                    | BME Corn<br>Silage<br>West Silo |                                                                                              |                                |
| NIR Packages                                                                                                                        |                    |                                 |                                                                                              |                                |
| Complete-NASEM (N9) Select Pig + 4 NDFD Itre points NSD, VFA, UCP<br>CNCPS 6.5+ (N3) Select Pig + 4 NDFD time points, NSD, VFA, UCP | \$33.00            |                                 |                                                                                              |                                |
| Select (N8) Issie Pap + ADFCOD. IFO (hey/hey/apatenal grain stg. Mik 05/13 anergy relates                                           | \$30.00            | Sick One 24 hr. 30 hr. 43 hr.   | (Since One) 24 hr. 30 hr. 48 hr.                                                             | glice One 24 hz. 30 hz. 48 hz. |
| Basic (N7) Promotes + RPV heyfeyteytertel gran dy, 0APDC+doorn wind later                                                           | \$23.00            |                                 |                                                                                              |                                |
| Equine Choice DE (N7H)<br>Corn Sitage Processing Score (Q1) Starth by MR                                                            |                    |                                 |                                                                                              |                                |
| UW Grain 2.0 (M Com. Dry Com. Shoplage)                                                                                             | \$29.00<br>\$59.00 |                                 |                                                                                              |                                |
| Chemistry Minoral Baskan                                                                                                            |                    |                                 |                                                                                              |                                |
|                                                                                                                                     |                    |                                 |                                                                                              |                                |
| Basic Minerals (M2) Ca, P, K, Mg, S                                                                                                 |                    |                                 |                                                                                              |                                |
| DCAD Mineralą (M3) Ca. P. K. Mg. S. O. NJ                                                                                           | \$17.00            |                                 |                                                                                              |                                |
| Complete Minerals (M4) Co. F. K. Mg. S. Zh. Co. Mr. Rs. No. AC B                                                                    | \$29.00            |                                 |                                                                                              |                                |
| Complete Mineral w/DCAD (M7) DLPK Mb 3 24 GLM1 Fe ML ALB O<br>Molds & Mycotoxins                                                    |                    | -                               | -                                                                                            |                                |
|                                                                                                                                     |                    |                                 |                                                                                              |                                |
|                                                                                                                                     |                    |                                 |                                                                                              |                                |
| Fill Jane: Non-forage                                                                                                               | eri                | C<br>Jr.<br>htt                 | Carporate Office: (608)3<br>And dairylandiate.com<br>(p:Vivwix dairylandiate.c<br>Sense<br>2 |                                |
|                                                                                                                                     |                    | 0.71                            |                                                                                              | - F                            |






How many different sample types are shown?

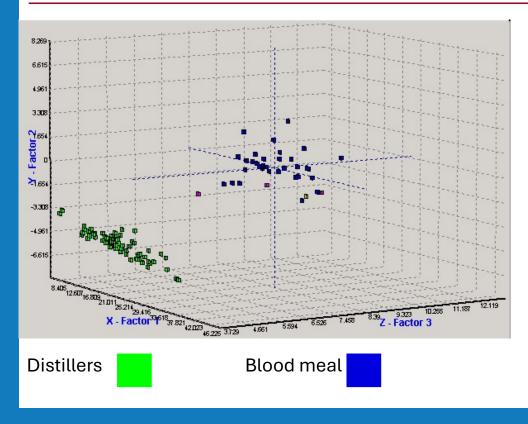
Principal component analysis

Summarizes variation in NIR spectra

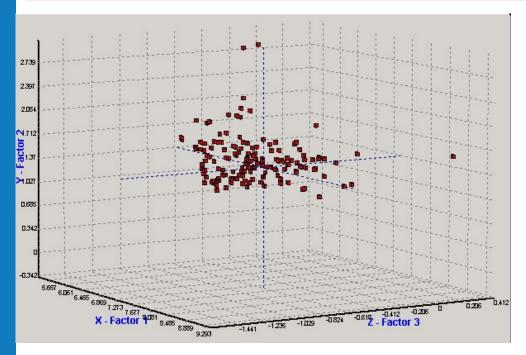
Global H value

- Closer to 0 = close to center of cloud
- > 3 may be outlier samples




How many different sample types are shown?

Principal component analysis


Summarizes variation in NIR spectra

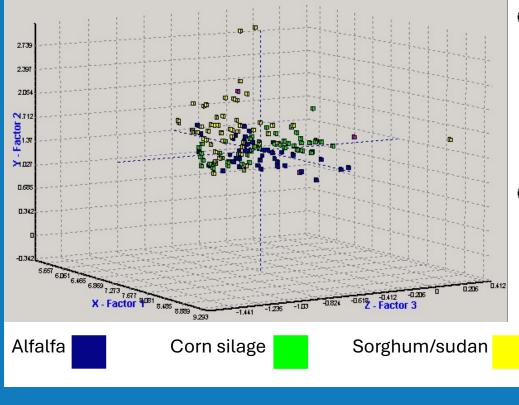
Global H value

- Closer to 0 = close to center of cloud
- > 3 may be outlier samples



- Principal component analysis
- Summarizes variation in NIR spectra
- Global H value
  - Closer to 0 = close to center of cloud
  - > 3 may be outlier samples




How many different sample types are shown?

Principal component analysis

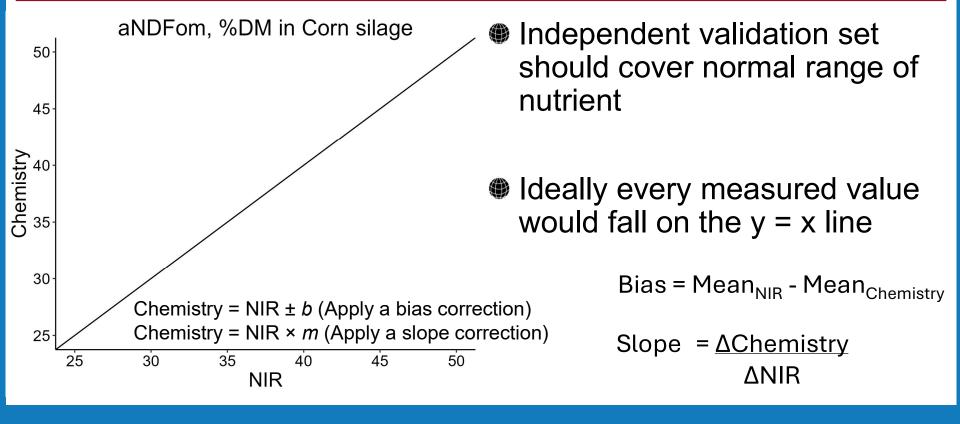
Summarizes variation in NIR spectra

Global H value

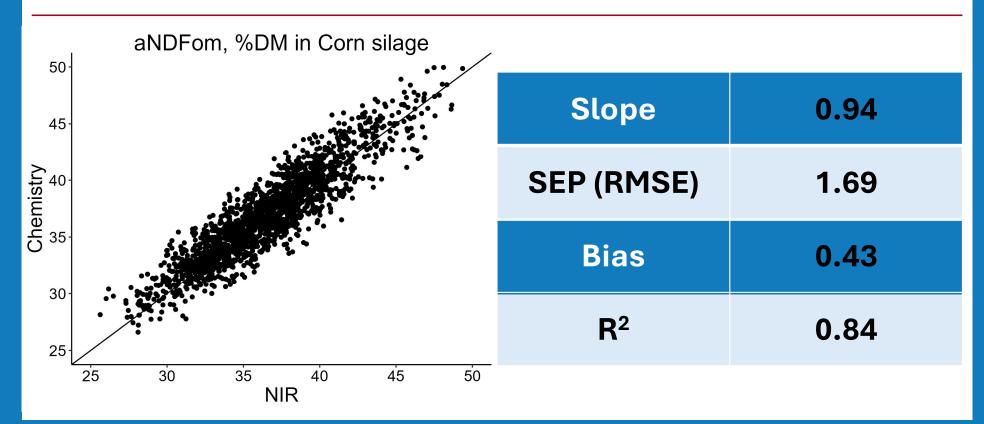
- Closer to 0 = close to center of cloud
- > 3 may be outlier samples

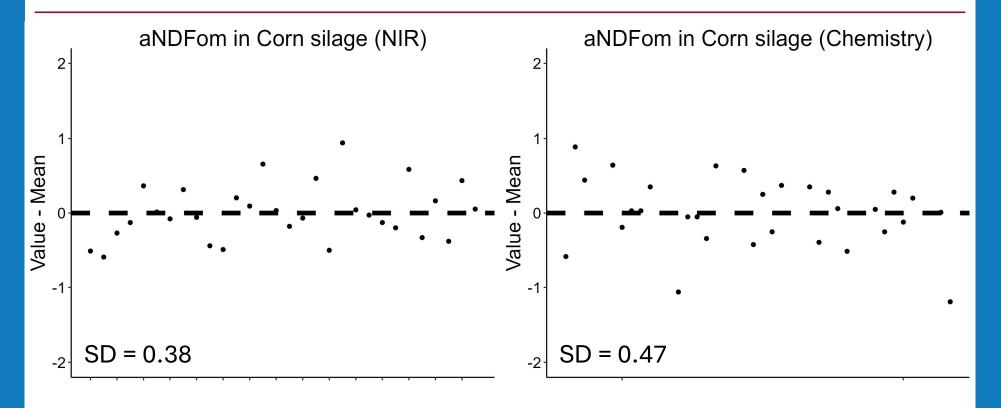


- Spectral analysis may not be reliable for the diverse sample population in a commercial laboratory
- Advanced classification algorithms are only as good as the training data


Standard error of prediction for mixed vs. crop specific calibrations

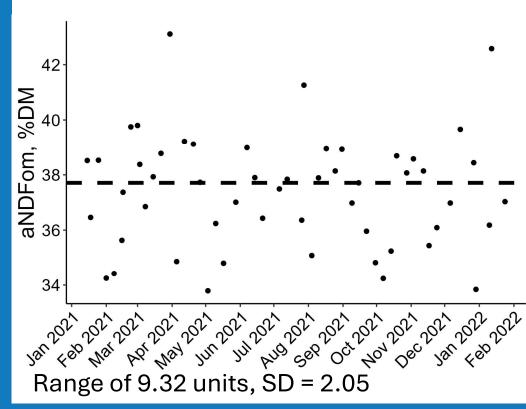
|        | Mixed small grain silages | Sorghum-<br>Sudan | Mixed<br>grass/legume | Alfalfa       |
|--------|---------------------------|-------------------|-----------------------|---------------|
| СР     | 1.15                      | 0.98              | 0.93                  | 0.80*         |
| ADF    | 1.92                      | 1.63              | 1.45                  | 1.47          |
| aNDFom | 2.54                      | 1.40*             | 1.41                  | <b>1.29</b> + |


\*Values differ significantly (P < 0.05), Values tended to differ P < 0.10


Schlau et al. 2025

## **NIR** Validation

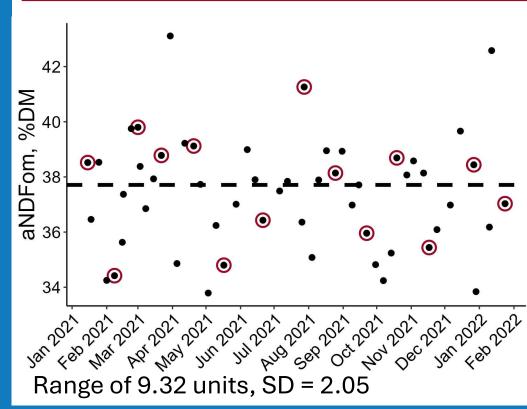



#### **NIR Validation**



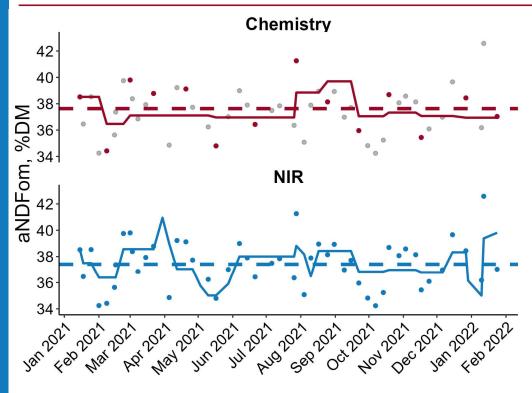


● SEP  $\approx$  1.5 – 2x the variation of the chemistry method


| Corn silage check sample<br>Dairyland | Corn silage<br>Mertens (2002) |
|---------------------------------------|-------------------------------|
| Mean: 33.27                           | Mean: 36.29                   |
| SD: 0.47                              | s <sub>r</sub> : 0.60         |
| n = 30                                | n = 12                        |



- Sampling error accounts for ~35% of variation for corn silage NDF St-Pierre and Weiss, 2015
  - Frequent sampling helps separate true variability from sampling error


Weiss and Tebbe, 2020

NIR is precise, economical and rapid



- Sampling error accounts for ~35%
- of variation for corn silage NDF St-Pierre and Weiss, 2015
  - Frequent sampling helps separate true variability from sampling error Weiss and Tebbe, 2020

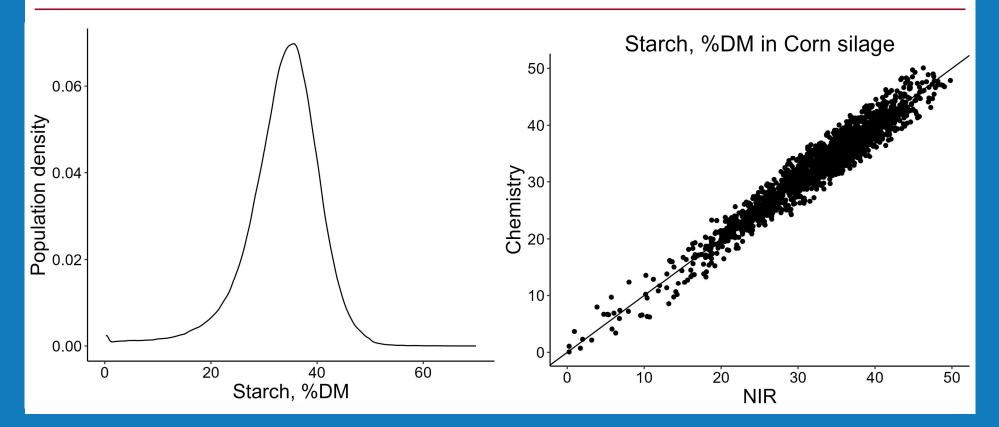
NIR is precise, economical and rapid



- Sampling error accounts for ~35% of variation for corn silage NDF St-Pierre and Weiss, 2015
- Frequent sampling helps separate true variability from sampling error Weiss and Tebbe, 2020
- NIR is precise, economical and rapid

## Predicting atypical feed by NIR

NIR is not appropriate for every situation


Significant soil contamination, some research trials

IR calibrations cover the expected range of a feed type

SEP is similar for typical and atypical samples, provided the samples are correctly identified

Using NIR data in feed databases requires more samples to account for prediction error

#### Predicting feed anomalies by NIR



**#ADSA2025** 

#### Behind the Report: NIR & Chemistry





**Subsample** 

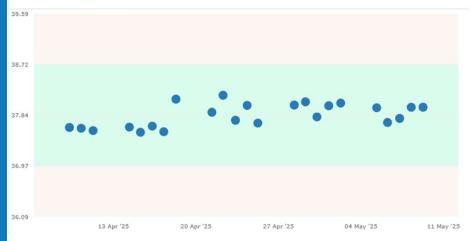


**Oven dry** 

#### 1-mm abrasion mill



#### Behind the Report: NIR & Chemistry


**Collect NIR** 

Spectra

aNDFom (CC-Arcadia1)

Sample

**Check-in** 



Sample

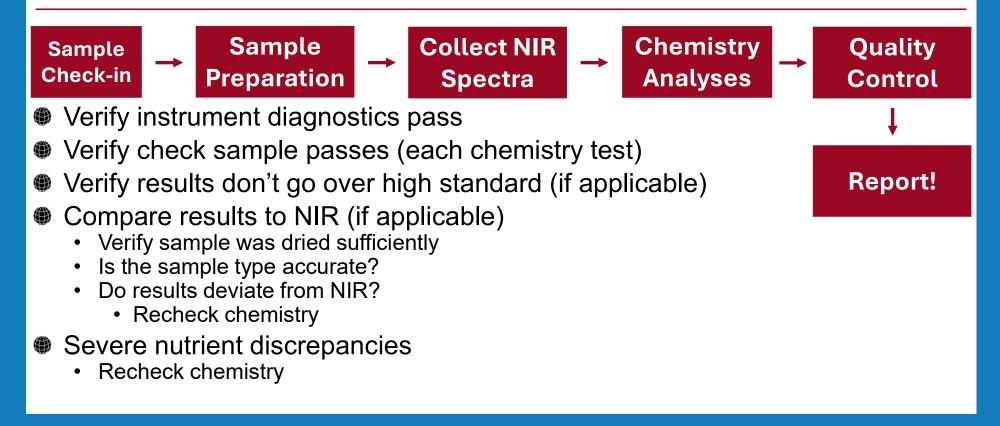
Preparation

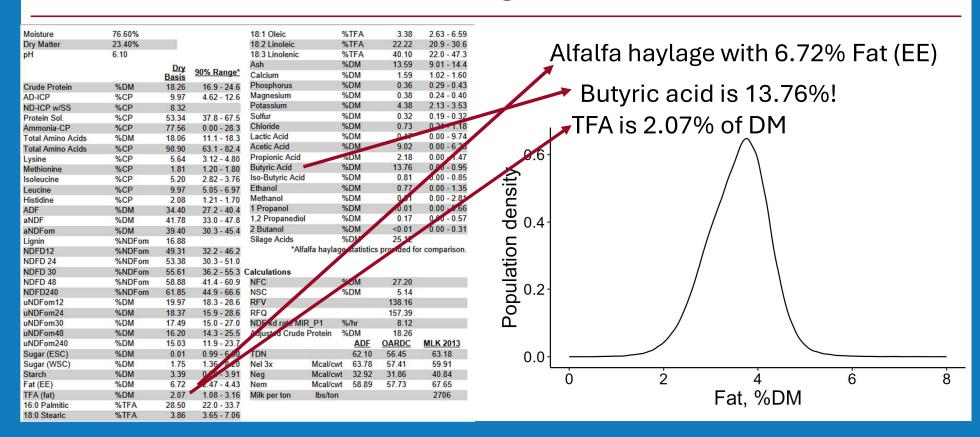




## Behind the Report: NIR



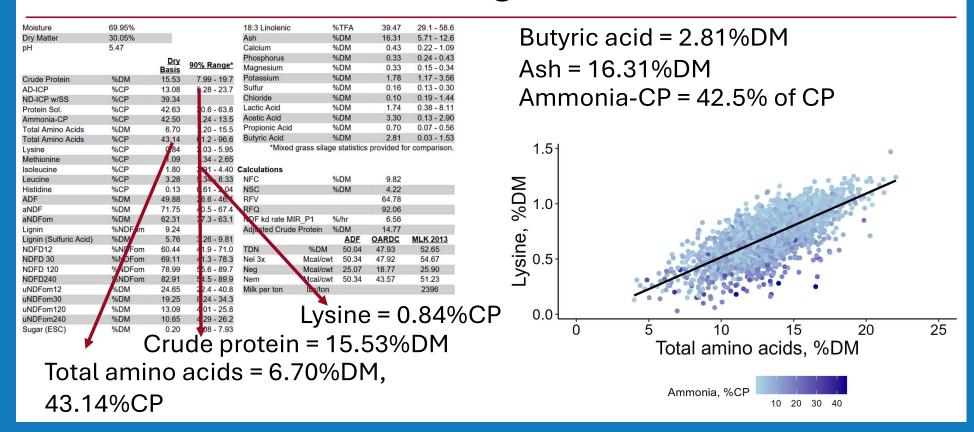

- Verify sample was dried sufficiently
- Is the sample type accurate?
- Are there reasons to recommend chemistry?
  - High ash
  - Severe nutrient discrepancies (ex. negative predictions or predictions > 100)

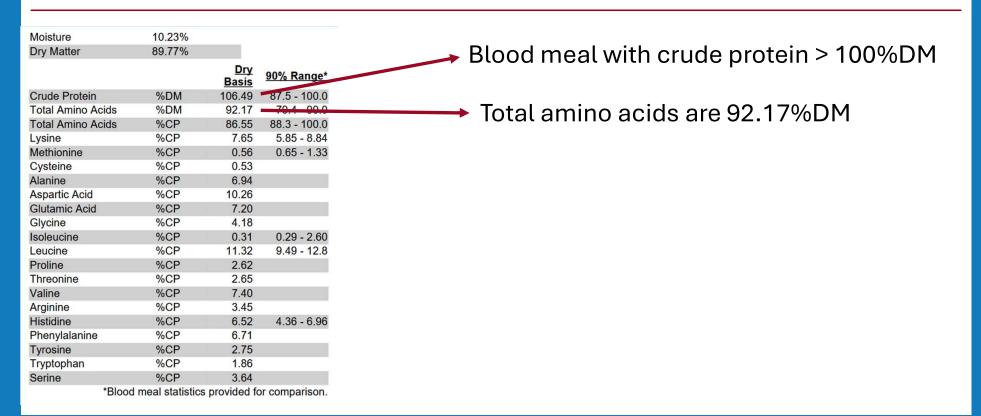

#### Behind the Report: NIR

Sample Check-in

| Samp<br>Prepara                                                                      |                                                                  | →            | Colle<br>Spe                     | ct NIR<br>ctra                                                                             | •                                                             |                                       | lity<br>trol               | <b>→</b> | Report! |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------|----------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------|----------------------------|----------|---------|
| DAIRYLAN<br>Laboratories, Inc                                                        | 213 Main<br>Arcadia, V                                           |              | ccount                           |                                                                                            |                                                               | Date: 2024-<br>No.: 008-2             | 12-10<br>412-1759502       |          |         |
|                                                                                      |                                                                  |              |                                  |                                                                                            |                                                               |                                       |                            |          |         |
| Account No.: 693 (0)<br>Gampled By: Your Fe<br>Gampled For: DOUG<br>Product: Bu      | eed Dealership                                                   |              |                                  | Test Mode:<br>Feed Type:<br>Sub Type:                                                      | N3<br>Whole p<br>Conven                                       | plant corn<br>tional                  |                            |          |         |
| Sampled By: Your Fo<br>Sampled For: DOUG<br>Product: Bu                              | eed Dealership<br>HARLAND<br>ink 2                               |              |                                  | Feed Type:<br>Sub Type:                                                                    | Whole p<br>Conven                                             | tional                                |                            |          |         |
| ampled By: Your Fo<br>ampled For: DOUG<br>roduct: Bu<br>Moisture                     | eed Dealership                                                   | _            |                                  | Feed Type:                                                                                 | Whole p                                                       |                                       | _                          |          |         |
| Sampled By: Your Fo<br>Sampled For: DOUG<br>Product: Bu                              | eed Dealership<br>6 HARLAND<br>Ink 2<br>64.54%                   |              |                                  | Feed Type:<br>Sub Type:<br>18:2 Linoleic                                                   | Whole p<br>Conven                                             | tional<br>52.22                       | 2.81 - 6.19                |          |         |
| ampled By: Your Fo<br>ampled For: DOUG<br>roduct: Bu<br>Moisture<br>Dry Matter       | eed Dealership<br>3 HARLAND<br>ink 2<br>64.54%<br>35.46%         | Dry          |                                  | Feed Type:<br>Sub Type:<br>18:2 Linoleic<br>18:3 Linolenic                                 | Whole p<br>Conven<br>%TFA<br>%TFA                             | 52.22<br>5.42                         | 2.81 - 6.19<br>0.16 - 0.31 |          |         |
| ampled By: Your Fo<br>ampled For: DOUG<br>roduct: Bu<br>Moisture<br>Dry Matter       | eed Dealership<br>3 HARLAND<br>ink 2<br>64.54%<br>35.46%         | Dry<br>Basis | <u>90% Range*</u>                | Feed Type:<br>Sub Type:<br>18:2 Linoleic<br>18:3 Linolenic<br>Ash                          | Whole p<br>Conven<br>%TFA<br>%TFA<br>%DM                      | 52.22<br>5.42<br>4.24                 | 0.16 - 0.31<br>0.19 - 0.28 |          |         |
| ampled By: Your Fo<br>ampled For: DOUG<br>roduct: Bu<br>Moisture<br>Dry Matter       | eed Dealership<br>3 HARLAND<br>ink 2<br>64.54%<br>35.46%         |              | <u>90% Range*</u><br>5.80 - 9.00 | Feed Type:<br>Sub Type:<br>18:2 Linoleic<br>18:3 Linolenic<br>Ash<br>Calcium               | Whole p<br>Conven<br>%TFA<br>%TFA<br>%DM<br>%DM<br>%DM<br>%DM | 52.22<br>5.42<br>4.24<br>0.18         | 0.16 - 0.31                |          |         |
| ampled By: Your Fo<br>ampled For: DOUG<br>roduct: Bu<br>Moisture<br>Dry Matter<br>pH | eed Dealership<br>3 HARLAND<br>ink 2<br>64.54%<br>35.46%<br>3.54 | Basis        |                                  | Feed Type:<br>Sub Type:<br>18:2 Linoleic<br>18:3 Linolenic<br>Ash<br>Calcium<br>Phosphorus | Whole p<br>Conven<br>%TFA<br>%TFA<br>%DM<br>%DM<br>%DM        | 52.22<br>5.42<br>4.24<br>0.18<br>0.23 | 0.16 - 0.31<br>0.19 - 0.28 |          |         |

## Behind the Report: Chemistry




| Moisture               | 69.95%  |       |                     | 18:3 Linolenic       | %TFA             | 39.47           | 29.1 - 58.6    |      |
|------------------------|---------|-------|---------------------|----------------------|------------------|-----------------|----------------|------|
| Dry Matter             | 30.05%  |       |                     | Ash                  | %DM              | 16.31           | 5.71 - 12.6    |      |
| pH                     | 5.47    |       |                     | Calcium              | %DM              | 0.43            | 0.22 - 1.09    |      |
|                        |         | Dry   |                     | Phosphorus           | %DM              | 0.33            | 0.24 - 0.43    |      |
|                        |         | Basis | 90% Range*          | Magnesium            | %DM              | 0.33            | 0.15 - 0.34    |      |
| Crude Protein          | %DM     | 15.53 | 7.99 - 19.7         | Potassium            | %DM              | 1.78            | 1.17 - 3.56    |      |
| AD-ICP                 | %CP     | 13.08 | <b>5</b> .28 - 23.7 | Sulfur               | %DM              | 0.16            | 0.13 - 0.30    |      |
| ND-ICP w/SS            | %CP     | 39.34 |                     | Chloride             | %DM              | 0.10            | 0.19 - 1.44    |      |
| Protein Sol.           | %CP     | 42.63 | 0.6 - 63.8          | Lactic Acid          | %DM              | 1.74            | 0.38 - 8.11    |      |
| Ammonia-CP             | %CP     | 42.50 | .24 - 13.5          | Acetic Acid          | %DM              | 3.30            | 0.13 - 2.90    |      |
| Total Amino Acids      | %DM     | 6.70  | .20 - 15.5          | Propionic Acid       | %DM              | 0.70            | 0.07 - 0.56    |      |
| Total Amino Acids      | %CP     | 43,14 | 1.2 - 96.6          | Butyric Acid         | %DM              | 2.81            | 0.03 - 1.53    |      |
| Lysine                 | %CP     | 0.84  | 2.03 - 5.95         | *Mixed grass         | silage statistic | cs provided for | or comparison. |      |
| Methionine             | %CP     | 1.09  | .34 - 2.65          |                      |                  |                 |                |      |
| Isoleucine             | %CP     | 1.80  | 291 - 4.40          | Calculations         |                  |                 |                |      |
| Leucine                | %CP     | 3.28  | 1.34 8.33           | NFC                  | %DM              | 9.82            |                |      |
| Histidine              | %CP     | 0.13  | 61 - 2 04           | NSC                  | %DM              | 4.22            |                |      |
| ADF                    | %DM     | 49.88 | 26.6 - 46.1         | RFV                  |                  | 64.78           |                |      |
| aNDF                   | %DM     | 71.75 | 40.5 - 67.4         | RFQ                  |                  | 92.06           |                |      |
| aNDFom                 | %DM     | 62.31 | 37.3 - 63.1         | NOF kd rate MIR P1   | %/hr             | 6.56            |                |      |
| Lignin                 | %NDF m  | 9.24  |                     | Adjusted Crude Prote | in %DM           | 14.77           |                |      |
| Lignin (Sulfuric Acid) | %DM     | 5.76  | 3 26 - 9.81         |                      | ADF              | OARDC           | MLK 2013       |      |
| NDFD12                 | %NFFom  | 60.44 | 41.9 - 71.0         | TDN %                | DM 50.04         | 47.93           | 52.65          |      |
| NDFD 30                | %NOFom  | 69.11 | 41.3 - 78.3         | Nel 3x Mca           | al/cwt 50.34     | 47.92           | 54.67          |      |
| NDFD 120               | % NDFom | 78.99 | 5.6 - 89.7          | Neg Mca              | al/cwt 25.07     | 18.77           | 25.90          |      |
| NDFD240                | NDFom   | 82.91 | 54.5 - 89.9         | Nem Mca              | al/cwt 50.34     | 43.57           | 51.23          |      |
| uNDFom12               | %DM     | 24.65 | 22.4 - 40.8         | Milk per ton Ib      | /ton             |                 | 2396           |      |
| uNDFom30               | %DM     | 19.25 | 8 24 - 34.3         |                      |                  |                 |                |      |
| uNDFom120              | %DM     | 13.09 | 4 01 - 25.8         | I.,                  | in in            | $\sim - c$      | 0 1 0          |      |
| uNDFom240              | %DM     | 10.65 | 4 29 - 26.2         | Ľ                    | vsine            | 3 = L           | ).84%          | /0UP |
| Sugar (ESC)            | %DM     | 0.20  | 08 - 7.93           |                      | ,                |                 |                |      |
|                        | (       | Cru   | de p                | rotein =             | : 15.            | 53%             | DM             |      |
| Tatal                  |         |       | -                   |                      |                  |                 |                |      |
| Iotal                  | ami     | 10    | acids               | s = 6.70             | י%D              | <b>™I</b> ,     |                |      |

Butyric acid = 2.81%DM Ash = 16.31%DM Ammonia-CP = 42.5% of CP

43.14%CP





| Moisture                | 6.61%           |                     |                |   |             |       |
|-------------------------|-----------------|---------------------|----------------|---|-------------|-------|
| Dry Matter              | 93.39%          |                     |                |   |             |       |
|                         |                 | <u>Dry</u><br>Basis | 90% Range*     | - |             |       |
| Crude Protein           | %DM             | 14.13               | 7.06 - 16.9    |   |             |       |
| aNDF                    | %DM             | 2.61                | 0.93 - 20.4    |   |             |       |
| aNDFom                  | %DM             | 2.29                | 0.63 - 19.5    |   |             | - 1   |
| Sugar (WSC)             | %DM             | 21.98               | 11.9 - 46.3    |   | Mass balanc | e = 1 |
| Starch                  | %DM             | 55.82               | 29.7 - 66.2    |   |             |       |
| Fat (EE)                | %DM             | 7.63                | 2.26 - 15.1    |   |             |       |
| Ash                     | %DM             | 4.32                | 1.89 - 7.17    | J |             |       |
|                         | aste statistics | provided for        | or comparison. |   |             |       |
| WATER SOLUBLE<br>STARCH | %DM             | 22.93               |                |   |             | F     |
| Sugar (ESC)             | %DM             | 10.78               | 8.71 - 37.7    |   |             | La    |
|                         | 0/ DM           |                     |                |   |             | Suc   |
| Total sugars (HPIC)     | %DM             | 6.51                |                |   |             | Ra    |
|                         |                 |                     |                |   |             | Sta   |
|                         |                 |                     |                |   |             | Malto |

## Conclusions

Anomalies in feed analysis challenge database development

- Statistical filtering often removes outlier samples (Yoder et al., 2014; Tran et al., 2020)
- True biological variation may be mistaken for analytical error
- Opportunity: Rethink database curation strategies
  - Distinguish between analytical error and true anomalies caused by real variation



# Thank you!



#### Acknowledgements

Dairyland Laboratories:

Phillip Goldblatt Nikolaus Lettner Mikaela Lisowski Beth Pronschinske Brian Steinlicht Dave Taysom Kyle Taysom



Dr. Dave Mertens



nschlau@dairylandlabs.com

