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How do you know what you know, and
how do you show what you know is really 

so?
Story time with Ira



Introduction

• Three ways of drawing statistical inference
• Frequentists
• Likelihood
• Bayesian

• Differences are sometimes controversial
• Modern scientists use the one that best fit their problem



Paradigms of 
Statistical Inference

• Three Paradigms of Inference
• Frequentists
• Likelihood
• Bayesian

• Differences are sometimes controversial
• Scientists use the one that best fit their problem



Bayes Theory
Thomas Bayes – 17th Century Mathematician and minister
Developed the theory of Inverse Probability



Bayes Theory

Unobserved quantities are treated as Random variables



Modeling sequence

Existing theory, scientific 
objectives, intuition

Deterministic 
process model

Collect 
observations

Design

Diagram relationship Write posterior 
distribution

Choose 
probability 
distribution

Model specification

Model implementation

Write code

Implement on 
simulated data

Implement on real 
data

Model selection/
Averaging

Model evaluation and inference

Posterior predictive 
checks

Probabilistic 
inference



Models
yixi

𝛽𝛽𝜊𝜊 𝛽𝛽1 𝜎𝜎

g(β, xi) = 𝛽𝛽0 + 𝛽𝛽1 xi

Priors

Beta0 = dnorm(0, 0.001)
Beta1 = dnorm(0, 0.001)
Tau = dgamma(0.001, 0.001)
Sigma_sq = 1/tau

Bayesian Credible Intervals



Deterministic process model
Process model
g(β, xi) = 𝛽𝛽0 + 𝛽𝛽1 xi
DMI ~ 4.5 + 1.91x

Variance model
g(β, xi) = 𝛽𝛽0 + 𝛽𝛽1 xi + 𝜀𝜀
DMI ~ 4.5 + 1.91x + variance



Conditional Probability
Bayesian models

S
A



Random variables

World is divided into things that are observed and things that are unobserved

1. Bayesian treat all unobserved quantities as random variables
2. Values of random variables are governed by chance
3. Probability distributions quantify “governed by chance”

Where chance occurs



Random variables

• Model parameters
• Latent states
• Missing data
• Predictions and forecasts
• Observations



Random variables

Collected data Fixed variables Random βeta’s



Three rules of probability

1. Conditional probability
2. Law of total probability
3. Chain rule of probability

Think proportions of groups, subgroups, 
and contingencies.



Defining the sample space

• The set of all possible values of a random variable
• The sample space, S has a specific area
• A specific value is an event or outcome

S
A

Pr(A) = Area of A / Area of S

Underlying system we 
want to learn about

Sampling or 
measurement

Proportion of Space S 
taken up by A



Conditional Probability

Conditional probability: the probability of an event given that we know another 
event has occurred. 
• What is the probability of event B , Given we know Event A has occurred

S
A

B

Pr(B|A) = Pr(A,B) / Pr(A) 

Pr(B|A) = probability of 
B conditional on knowing 

A occurred

Underlying system we 
want to learn about

First event

Second event we care 
about related to first event



Independence
Event A and B are independent if the occurrence of A does not tell us anything about 
B
Pr(A|B) = Pr(A)
Pr(B|A) = Pr(B)

S

B

A

Pr(A|B) = area of A and B / area of B

Pr(A|B) = area of A / area of S

Can be rearranged

Pr(A,B) = Pr(A|B)Pr(B)
Pr(A,B) = Pr(B|A)Pr(A)



Law of Total Probability

Pr(A) is unkown, but can be calculated using the known probabilities of several 
events
Bn: n = 1,2,3,… define the entire sample space S

B2
B3

B1

Sample Space S



Law of Total Probability

Rearranging the expression of conditional probability
Pr(A,B) = Pr(A|B)Pr(B)
Pr(A,B) = Pr(B|A)Pr(A)

B2
B3

B1

Sample Space S



Probability of Event A?

Pr(A) = ∑nPr(A|Bn)Pr(Bn) = ∑nPr(A,Bn) discrete case
Pr(A) = ∫Pr(A|B)Pr(B) B = ∫Pr(A,B)B continuous

B2
B3

B1

Sample Space S



The Chain Rule of Probability

The chain rule of probability allows writing joint distributions as a product of 
conditional distributions.

Pr(z1, z2….,zn) = Pr(zn|zn-1,…z1)Pr(zn-1|zn-2..,z1)Pr(z2|z1)Pr(z1)

• Z’s can be scalars or vectors
• Sequence does not matter
• Choose a sequence that makes sense



Chain Rule of Probability

Pr(z1, z2….,zn) = Pr(zn|zn-1,…z1)Pr(zn-1|zn-2..,z1)Pr(z2|z1)Pr(z1)

Total Probability SpaceZ1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10



Factoring joint probabilities

A

B C

Represents [A|B,C][B][C]

Directed Acyclic Graph

• DAGs (Bayesian Networks) specify how joint distributions are 
factored into conditional distributions

• Nodes at the heads of arrows must be on the left side of 
conditioning symbols

• Nodes at tails must be on the right side of conditioning symbols
• Any node without an arrow leading to it must be expressed 

unconditionally



Probability 
Distributions
A probability implies a distribution



What we need to know

• Probability distribution are our toolbox for fitting models to data and representing 
uncertainty

• Moments are how we summarize probability distributions
• Every distribution is supported by underlying data
• The data type defines the support for the distribution



Consider a Linear Function

Y = mx + b
• y = f(x) is a function of x, with fixed values m and b each value of x gets mapped 

to as single f(x)
• x is our variable of interest
Random Variables
• Sample space encompasses all possible outcomes from a random process
• A random variable is a function from a particular sample space to real numbers



Probability distribution components
Probability model Random variable support Parameters Moments
Normal Real numbers u, σ2 u, σ2

Lognormal Positive real numbers 𝛂𝛂 mean of log of z
β the standard deviation of 
the log of z  

u, σ2

Gamma Positive real numbers 𝛂𝛂 = shape, β = rate u, σ2

Beta Real numbers [0,1] or (0,1) ⍺, β
Bernoulli 0 or 1 ɸ probability that random 

variable equals 1
ɸ = u

u = ɸ
σ2 =ɸ(1-ɸ)

Binomial Counts in two categories with 
upper bound

n number of trials
ɸ probability of success

u = nɸ
σ2 = nɸ(1-ɸ)

Negative binomial Counts λ the mean number of 
occurences
k dispersion parameter

u = λ
Σ2 =  λ + λ2 / k



Example Processes

Item Pregnancy check cows Weaning heifers
Random process Pregnancy check cows Body mass 
Possible outcomes Pregnant or Not-Pregnant Any amount of mass
Random variable X = number of pregnant cows Y = amount of body mass
Support Sx = {0,1} Sy: y > 0
Possible Probabilities of Interest Pr(Pregnant) = Pr(X=1) Pr(>500lb heifer) = Pr(Y > 500)



Frequency distributions

Normal Distribution
hist(rnorm(n = 10000, mean = 0, sd = 1))

Log-Normal Distribution
hist(rlnorm(n = 10000, mean = 0, sd = 1))



Probability distributions

Normal distribution
plot(density(rnorm(n=10000, mean=0, sd=1)))

Log-Normal distribution
plot(density(rlnorm(n=10000, mean=0, sd=1)))



Steer body-weight

u=500

sd=50

a = log(u) - 0.5*log((sd^2 + u^2)/u^2)

B = sqrt(log((sd^2 + u^2)/u^2))

plot(density(rlnorm(10000,a,B)))



Probability of observeing a steer > 600 lbs

plot(density(rgamma(1000, shape = a, rate = B)))

abline(v=600, col = 'red’)

pgamma(q=600,shape = a, rate = B)

1-pgamma(q=600,shape = a, rate = B)

0.0960.903



Probability of observing a steer between 525 and 
675
plot(density(rgamma(1000, shape = a, rate = B)))

abline(v=525, col = 'blue')

abline(v=675, col = 'blue')

pgamma(q=675,shape = a, rate = B)-

  pgamma(q=525,shape = a, rate = B)

0.0150.3370.353

Bayesian Credible Interval



Day-to-day variability in DMI 
effect on DMI and Gain
LAN trial



DMI is known to vary from day to day within animal



Variables

• Dry Matter Intake (DMI)
• Average Dry Matter Intake (uDMI)
• Standard Deviation of Dry Matter Intake (sdDMI)
• Coefficient of Variation of Dry Matter Intake (cvDMI)



Define hypothesis

• Animals with increased variability in day-to-day feed intake exhibit lower DMI 
and lower average daily gain



Find prior knowledge



Factor out model

• Deterministic model: yi= βo + β1xi
• Conditional model: [β,σ2|y] 𝛂𝛂 [y|βo, β1, σ2]
• Factored conditional model: [β,σ2|y] 𝛂𝛂 [y|βo, β1, σ2][βo][β1][σ2]
• Define posterior distribution model:

• [β,σ2|y] 𝛂𝛂 ∏ Normal(yi| g(βo,β1,xi), σ2)
  X Normal(βo| 2.29, 0.42)
  X Normal(β1| 2.29, 0.42)
  X uniform(σ| 0, 2)
 



Define Jags Model 



Results

2.5% 97.5%
0.61 1.26

2.5% 97.5%
-0.87 0.84

2.5% 97.5%
0.25 1.30



Prior, posterior, and joint distributions

Green – Prior
Blue – Posterior
Red - Joint



Basics of Bayesian

• Unobserved quantities are random
• Probability is contingent upon the sampling space and definition of the problem
• Joint probabilities are used to quantify likelihood
• Probability distributions are used to describe frequency of data occurring
• Moments are distribution parameters, defining where the data exists in a sampling 

space
• Choose distributions based upon your data type
• Graph Probability distributions
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