Calculating Probabilities: Fundamentals of Bayesian Statistics Ira Parsons, PhD Story time with Ira #### Introduction - Three ways of drawing statistical inference - Frequentists - Likelihood - Bayesian - Differences are sometimes controversial - Modern scientists use the one that best fit their problem #### Paradigms of Statistical Inference - Three Paradigms of Inference - Frequentists - Likelihood - Bayesian - Differences are sometimes controversial - Scientists use the one that best fit their problem ## **Bayes Theory** Unobserved quantities are treated as Random variables ## Modeling sequence #### Model evaluation and inference Posterior predictive checks Probabilistic inference Model selection/ Averaging #### Models #### Priors ``` Beta0 = dnorm(0, 0.001) Beta1 = dnorm(0, 0.001) Tau = dgamma(0.001, 0.001) Sigma_sq = 1/tau ``` ``` model { # priors beta0 ~ dnorm(0,.001) beta1 ~ dnorm(0,.001) tau ~ dgamma(.001, .001) sigma_sq <- 1/tau # likelihood for(i in 1:n) { mu[i] <- beta0 + beta1*x[i] y[i] ~ dnorm(mu[i], tau) } }</pre> ``` Bayesian Credible Intervals ## Deterministic process model #### **Process model** $$g(\beta, xi) = \beta_0 + \beta_1 xi$$ DMI ~ 4.5 + 1.91x #### Variance model g(β, xi) = $$β_0 + β_1 xi + ε$$ DMI ~ $4.5 + 1.91x + variance$ #### Random variables World is divided into things that are observed and things that are unobserved - 1. Bayesian treat all unobserved quantities as random variables - 2. Values of random variables are governed by chance - 3. Probability distributions quantify "governed by chance" Where chance occurs ## Random variables Collected data Fixed variables Random Beta's DARNALL FEEDLOT Average Daily Gain, lbs Average Daily Gain, lbs SOUTH DAKOTA STATE UNIVERSITY ## Three rules of probability - 1. Conditional probability - 2. Law of total probability - 3. Chain rule of probability Think proportions of groups, subgroups, and contingencies. #### Defining the sample space • The set of all possible values of a random variable • The sample space, S has a specific area • A specific value is an event or outcome Sampling or measurement Pr(A) = Area of A / Area of S Underlying system we want to learn about Proportion of Space S taken up by A #### **Conditional Probability** Second event we care about related to first event Conditional probability: the probability of an event given that we know another event has occurred. • What is the probability of event B, Given we know Event A has occurred First event S Pr(B|A) = Pr(A,B) / Pr(A) Underlying system we want to learn about Pr(B|A) = probability ofB conditional on knowing A occurred #### Independence Event A and B are *independent* if the occurrence of A does not tell us anything about B $$Pr(A|B) = Pr(A)$$ $$Pr(B|A) = Pr(B)$$ $$Pr(A|B) = area of A and B / area of B$$ $$Pr(A|B) = area of A / area of S$$ Can be rearranged $$Pr(A,B) = Pr(A|B)Pr(B)$$ $$Pr(A,B) = Pr(B|A)Pr(A)$$ #### Law of Total Probability Pr(A) is unknown, but can be calculated using the known probabilities of several events B_n : n = 1,2,3,... define the entire sample space S ## Law of Total Probability Rearranging the expression of conditional probability $$Pr(A,B) = Pr(A|B)Pr(B)$$ $$Pr(A,B) = Pr(B|A)Pr(A)$$ ## Probability of Event A? $Pr(A) = \sum_{n} Pr(A|B_n) Pr(B_n) = \sum_{n} Pr(A,B_n)$ discrete case $Pr(A) = \int Pr(A|B)Pr(B) B = \int Pr(A,B)B$ continuous #### The Chain Rule of Probability The chain rule of probability allows writing joint distributions as a product of conditional distributions. $$Pr(z_1, z_2, z_1) = Pr(z_1|z_1, z_1)Pr(z_1|z_1, z_1)Pr(z_2|z_1)Pr(z_1|z_1)$$ - Z's can be scalars or vectors - Sequence does not matter - Choose a sequence that makes sense #### Chain Rule of Probability $Pr(z_1, z_2, z_1) = Pr(z_1|z_1, z_1)Pr(z_1|z_1, z_1)Pr(z_2|z_1)Pr(z_1|z_1)$ ## Factoring joint probabilities Directed Acyclic Graph Represents [A|B,C][B][C] - DAGs (Bayesian Networks) specify how joint distributions are factored into conditional distributions - Nodes at the heads of arrows must be on the left side of conditioning symbols - Nodes at tails must be on the right side of conditioning symbols - Any node without an arrow leading to it must be expressed unconditionally # Probability Distributions A probability implies a distribution #### What we need to know - Probability distribution are our toolbox for fitting models to data and representing uncertainty - Moments are how we summarize probability distributions - Every distribution is supported by underlying data - The data type defines the support for the distribution #### Consider a Linear Function $$Y = mx + b$$ - y = f(x) is a function of x, with fixed values m and b each value of x gets mapped to as single f(x) - x is our variable of interest #### **Random Variables** - Sample space encompasses all possible outcomes from a random process - A random variable is a function from a particular sample space to real numbers ## Probability distribution components | Probability model | Random variable support | Parameters | Moments | |-------------------|---|--|--| | Normal | Real numbers | u, σ^2 | u, σ^2 | | Lognormal | Positive real numbers | α mean of log of z β the standard deviation of the log of z | u, σ^2 | | Gamma | Positive real numbers | α = shape, β = rate | u, σ^2 | | Beta | Real numbers $[0,1]$ or $(0,1)$ | α, β | | | Bernoulli | 0 or 1 | ϕ probability that random variable equals 1 $\phi = u$ | $u = \phi$ $\sigma^2 = \phi(1 - \phi)$ | | Binomial | Counts in two categories with upper bound | n number of trialsφ probability of success | $u = n\phi$ $\sigma^2 = n\phi(1-\phi)$ | | Negative binomial | Counts | λ the mean number of occurences k dispersion parameter | $u = \lambda$ $\Sigma^2 = \lambda + \lambda^2 / k$ | ## **Example Processes** | Item | Pregnancy check cows | Weaning heifers | |------------------------------------|----------------------------|---------------------------------| | Random process | Pregnancy check cows | Body mass | | Possible outcomes | Pregnant or Not-Pregnant | Any amount of mass | | Random variable | X= number of pregnant cows | Y = amount of body mass | | Support | $Sx = \{0,1\}$ | <i>Sy</i> : $y > 0$ | | Possible Probabilities of Interest | Pr(Pregnant) = Pr(X=1) | Pr(>500lb heifer) = Pr(Y > 500) | ## Frequency distributions #### **Normal Distribution** hist(rnorm(n = 10000, mean = 0, sd = 1)) #### **Log-Normal Distribution** hist(rlnorm(n = 10000, mean = 0, sd = 1)) ## Probability distributions #### **Normal distribution** plot(density(rnorm(n=10000, mean=0, sd=1))) #### **Log-Normal distribution** plot(density(rlnorm(n=10000, mean=0, sd=1))) ## Steer body-weight ``` u=500 sd=50 a = log(u) - 0.5*log((sd^2 + u^2)/u^2) B = sqrt(log((sd^2 + u^2)/u^2)) plot(density(rlnorm(10000,a,B))) ``` ## Probability of observeing a steer > 600 lbs ``` plot(density(rgamma(1000, shape = a, rate = B))) abline(v=600, col = 'red') pgamma(q=600, shape = a, rate = B) 1-pgamma(q=600, shape = a, rate = B) ``` #### Probability of observing a steer between 525 and 675 Bayesian Credible Interval ``` plot(density(rgamma(1000, shape = a, rate = B))) abline(v=525, col = 'blue') abline(v=675, col = 'blue') pgamma(q=675, shape = a, rate = B)- pgamma(q=525, shape = a, rate = B) ``` ## DMI is known to vary from day to day within animal #### Variables - Dry Matter Intake (DMI) - Average Dry Matter Intake (uDMI) - Standard Deviation of Dry Matter Intake (sdDMI) - Coefficient of Variation of Dry Matter Intake (cvDMI) ## Define hypothesis • Animals with increased variability in day-to-day feed intake exhibit lower DMI and lower average daily gain #### Find prior knowledge Journal of Animal Science, 2020, Vol. 98, No. 7, 1-9 doi:10.1093/jas/skaa189 Advance Access publication June 26, 2020 Received: 3 September 2019 and Accepted: 22 June 2020 Ruminant Nutrition #### RUMINANT NUTRITION Characterization of feeding behavior traits in steers with divergent residual feed intake consuming a high-concentrate diet Ira L. Parsons, Jocelyn R. Johnson, William C. Kayser, Luis O. Tedeschi, and Gordon E. Carstens¹ Department of Animal Science, Texas A&M University, College Station, TX 77845 ¹Corresponding author: g-carstens@tamu.edu ORCiD number: 0000-0003-1883-4911 (L. O. Tedeschi). #### Results and Discussion #### Growth and performance Performance, feed efficiency, and ultrasound least squared means are presented in Table 3. The initial age of steers at the start of the trials averaged 290 \pm 16 d and ranged from 280 to 313 d. The means and SD for ADG and DMI were 1.71 \pm 0.26 and 10.1 \pm 1.1 kg/d, respectively, which are consistent with growth patterns expected from steers of this breed, weight, and age class. In this study, variation in ADG and mid-test BW^{0.75} #### Factor out model - Deterministic model: $yi = \beta o + \beta 1xi$ - Conditional model: $[\beta, \sigma^2|y] \alpha [y|\beta o, \beta 1, \sigma^2]$ - Factored conditional model: $[\beta, \sigma^2|y] \alpha [y|\beta o, \beta 1, \sigma^2][\beta o][\beta 1][\sigma^2]$ - Define posterior distribution model: - $[\beta,\sigma^2|y]$ α \prod Normal(yi| $g(\beta o,\beta 1,xi),\sigma^2)$ X Normal(βo | 2.29, 0.42) X Normal($\beta 1$ | 2.29, 0.42) X uniform(σ | 0, 2) #### Define Jags Model #### Results | 2.5% | 97.5% | | |------|-------|--| | 0.61 | 1.26 | | | 2.5% | 97.5% | |-------|-------| | -0.87 | 0.84 | | 2.5% | 97.5% | |------|-------| | 0.25 | 1.30 | ## Prior, posterior, and joint distributions Green – Prior Blue – Posterior Red - Joint #### Basics of Bayesian - Unobserved quantities are random - Probability is contingent upon the sampling space and definition of the problem - Joint probabilities are used to quantify likelihood - Probability distributions are used to describe frequency of data occurring - Moments are distribution parameters, defining where the data exists in a sampling space - Choose distributions based upon your data type - Graph Probability distributions