Calculating Probabilities: Fundamentals of Bayesian Statistics

Ira Parsons, PhD

Story time with Ira

Introduction

- Three ways of drawing statistical inference
 - Frequentists
 - Likelihood
 - Bayesian
- Differences are sometimes controversial
- Modern scientists use the one that best fit their problem

Paradigms of Statistical Inference

- Three Paradigms of Inference
 - Frequentists
 - Likelihood
 - Bayesian
- Differences are sometimes controversial
- Scientists use the one that best fit their problem

Bayes Theory

Unobserved quantities are treated as Random variables

Modeling sequence

Model evaluation and inference

Posterior predictive checks

Probabilistic inference

Model selection/ Averaging

Models

Priors

```
Beta0 = dnorm(0, 0.001)

Beta1 = dnorm(0, 0.001)

Tau = dgamma(0.001, 0.001)

Sigma_sq = 1/tau
```

```
model {
    # priors
    beta0 ~ dnorm(0,.001)
    beta1 ~ dnorm(0,.001)
    tau ~ dgamma(.001, .001)
    sigma_sq <- 1/tau

# likelihood
    for(i in 1:n) {
        mu[i] <- beta0 + beta1*x[i]
        y[i] ~ dnorm(mu[i], tau)
    }
}</pre>
```

Bayesian Credible Intervals

Deterministic process model

Process model

$$g(\beta, xi) = \beta_0 + \beta_1 xi$$

DMI ~ 4.5 + 1.91x

Variance model

g(β, xi) =
$$β_0 + β_1 xi + ε$$

DMI ~ $4.5 + 1.91x + variance$

Random variables

World is divided into things that are observed and things that are unobserved

- 1. Bayesian treat all unobserved quantities as random variables
- 2. Values of random variables are governed by chance
- 3. Probability distributions quantify "governed by chance" Where chance occurs

Random variables Collected data Fixed variables Random Beta's DARNALL FEEDLOT Average Daily Gain, lbs Average Daily Gain, lbs SOUTH DAKOTA STATE UNIVERSITY

Three rules of probability

- 1. Conditional probability
- 2. Law of total probability
- 3. Chain rule of probability

Think proportions of groups, subgroups, and contingencies.

Defining the sample space

• The set of all possible values of a random variable

• The sample space, S has a specific area

• A specific value is an event or outcome

Sampling or measurement

Pr(A) = Area of A / Area of S

Underlying system we want to learn about

Proportion of Space S taken up by A

Conditional Probability

Second event we care

about related to first event

Conditional probability: the probability of an event given that we know another event has occurred.

• What is the probability of event B, Given we know Event A has occurred

First event S

Pr(B|A) = Pr(A,B) / Pr(A)

Underlying system we want to learn about

Pr(B|A) = probability ofB conditional on knowing
A occurred

Independence

Event A and B are *independent* if the occurrence of A does not tell us anything about B

$$Pr(A|B) = Pr(A)$$

$$Pr(B|A) = Pr(B)$$

$$Pr(A|B) = area of A and B / area of B$$

$$Pr(A|B) = area of A / area of S$$

Can be rearranged

$$Pr(A,B) = Pr(A|B)Pr(B)$$

$$Pr(A,B) = Pr(B|A)Pr(A)$$

Law of Total Probability

Pr(A) is unknown, but can be calculated using the known probabilities of several events

 B_n : n = 1,2,3,... define the entire sample space S

Law of Total Probability

Rearranging the expression of conditional probability

$$Pr(A,B) = Pr(A|B)Pr(B)$$

$$Pr(A,B) = Pr(B|A)Pr(A)$$

Probability of Event A?

 $Pr(A) = \sum_{n} Pr(A|B_n) Pr(B_n) = \sum_{n} Pr(A,B_n)$ discrete case

 $Pr(A) = \int Pr(A|B)Pr(B) B = \int Pr(A,B)B$ continuous

The Chain Rule of Probability

The chain rule of probability allows writing joint distributions as a product of conditional distributions.

$$Pr(z_1, z_2, z_1) = Pr(z_1|z_1, z_1)Pr(z_1|z_1, z_1)Pr(z_2|z_1)Pr(z_1|z_1)$$

- Z's can be scalars or vectors
- Sequence does not matter
- Choose a sequence that makes sense

Chain Rule of Probability

 $Pr(z_1, z_2, z_1) = Pr(z_1|z_1, z_1)Pr(z_1|z_1, z_1)Pr(z_2|z_1)Pr(z_1|z_1)$

Factoring joint probabilities

Directed Acyclic Graph

Represents [A|B,C][B][C]

- DAGs (Bayesian Networks) specify how joint distributions are factored into conditional distributions
- Nodes at the heads of arrows must be on the left side of conditioning symbols
- Nodes at tails must be on the right side of conditioning symbols
- Any node without an arrow leading to it must be expressed unconditionally

Probability Distributions

A probability implies a distribution

What we need to know

- Probability distribution are our toolbox for fitting models to data and representing uncertainty
- Moments are how we summarize probability distributions
- Every distribution is supported by underlying data
- The data type defines the support for the distribution

Consider a Linear Function

$$Y = mx + b$$

- y = f(x) is a function of x, with fixed values m and b each value of x gets mapped to as single f(x)
- x is our variable of interest

Random Variables

- Sample space encompasses all possible outcomes from a random process
- A random variable is a function from a particular sample space to real numbers

Probability distribution components

Probability model	Random variable support	Parameters	Moments
Normal	Real numbers	u, σ^2	u, σ^2
Lognormal	Positive real numbers	α mean of log of z β the standard deviation of the log of z	u, σ^2
Gamma	Positive real numbers	α = shape, β = rate	u, σ^2
Beta	Real numbers $[0,1]$ or $(0,1)$	α, β	
Bernoulli	0 or 1	ϕ probability that random variable equals 1 $\phi = u$	$u = \phi$ $\sigma^2 = \phi(1 - \phi)$
Binomial	Counts in two categories with upper bound	n number of trialsφ probability of success	$u = n\phi$ $\sigma^2 = n\phi(1-\phi)$
Negative binomial	Counts	λ the mean number of occurences k dispersion parameter	$u = \lambda$ $\Sigma^2 = \lambda + \lambda^2 / k$

Example Processes

Item	Pregnancy check cows	Weaning heifers
Random process	Pregnancy check cows	Body mass
Possible outcomes	Pregnant or Not-Pregnant	Any amount of mass
Random variable	X= number of pregnant cows	Y = amount of body mass
Support	$Sx = \{0,1\}$	<i>Sy</i> : $y > 0$
Possible Probabilities of Interest	Pr(Pregnant) = Pr(X=1)	Pr(>500lb heifer) = Pr(Y > 500)

Frequency distributions

Normal Distribution

hist(rnorm(n = 10000, mean = 0, sd = 1))

Log-Normal Distribution

hist(rlnorm(n = 10000, mean = 0, sd = 1))

Probability distributions

Normal distribution

plot(density(rnorm(n=10000, mean=0, sd=1)))

Log-Normal distribution

plot(density(rlnorm(n=10000, mean=0, sd=1)))

Steer body-weight

```
u=500
sd=50
a = log(u) - 0.5*log((sd^2 + u^2)/u^2)
B = sqrt(log((sd^2 + u^2)/u^2))
plot(density(rlnorm(10000,a,B)))
```


Probability of observeing a steer > 600 lbs

```
plot(density(rgamma(1000, shape = a, rate = B)))
abline(v=600, col = 'red')
pgamma(q=600, shape = a, rate = B)
1-pgamma(q=600, shape = a, rate = B)
```


Probability of observing a steer between 525 and 675

Bayesian Credible Interval

```
plot(density(rgamma(1000, shape = a, rate = B)))
abline(v=525, col = 'blue')
abline(v=675, col = 'blue')
pgamma(q=675, shape = a, rate = B)-
  pgamma(q=525, shape = a, rate = B)
```


DMI is known to vary from day to day within animal

Variables

- Dry Matter Intake (DMI)
- Average Dry Matter Intake (uDMI)
- Standard Deviation of Dry Matter Intake (sdDMI)
- Coefficient of Variation of Dry Matter Intake (cvDMI)

Define hypothesis

• Animals with increased variability in day-to-day feed intake exhibit lower DMI and lower average daily gain

Find prior knowledge

Journal of Animal Science, 2020, Vol. 98, No. 7, 1-9

doi:10.1093/jas/skaa189

Advance Access publication June 26, 2020 Received: 3 September 2019 and Accepted: 22 June 2020 Ruminant Nutrition

RUMINANT NUTRITION

Characterization of feeding behavior traits in steers with divergent residual feed intake consuming a high-concentrate diet

Ira L. Parsons, Jocelyn R. Johnson, William C. Kayser, Luis O. Tedeschi, and Gordon E. Carstens¹

Department of Animal Science, Texas A&M University, College Station, TX 77845

¹Corresponding author: g-carstens@tamu.edu

ORCiD number: 0000-0003-1883-4911 (L. O. Tedeschi).

Results and Discussion

Growth and performance

Performance, feed efficiency, and ultrasound least squared means are presented in Table 3. The initial age of steers at the start of the trials averaged 290 \pm 16 d and ranged from 280 to 313 d. The means and SD for ADG and DMI were 1.71 \pm 0.26 and 10.1 \pm 1.1 kg/d, respectively, which are consistent with growth patterns expected from steers of this breed, weight, and age class. In this study, variation in ADG and mid-test BW^{0.75}

Factor out model

- Deterministic model: $yi = \beta o + \beta 1xi$
- Conditional model: $[\beta, \sigma^2|y] \alpha [y|\beta o, \beta 1, \sigma^2]$
- Factored conditional model: $[\beta, \sigma^2|y] \alpha [y|\beta o, \beta 1, \sigma^2][\beta o][\beta 1][\sigma^2]$
- Define posterior distribution model:
 - $[\beta,\sigma^2|y]$ α \prod Normal(yi| $g(\beta o,\beta 1,xi),\sigma^2)$ X Normal(βo | 2.29, 0.42) X Normal($\beta 1$ | 2.29, 0.42) X uniform(σ | 0, 2)

Define Jags Model

Results

2.5%	97.5%	
0.61	1.26	

2.5%	97.5%
-0.87	0.84

2.5%	97.5%
0.25	1.30

Prior, posterior, and joint distributions

Green – Prior Blue – Posterior Red - Joint

Basics of Bayesian

- Unobserved quantities are random
- Probability is contingent upon the sampling space and definition of the problem
- Joint probabilities are used to quantify likelihood
- Probability distributions are used to describe frequency of data occurring
- Moments are distribution parameters, defining where the data exists in a sampling space
- Choose distributions based upon your data type
- Graph Probability distributions

