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How do you know what you know, and
how do you show what you know is really
SO?

Story time with Ira
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Introduction

* Three ways of drawing statistical inference

* Frequentists
 Likelihood
* Bayesian

e Differences are sometimes controversial

* Modern scientists use the one that best fit their problem
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Paradigms of
Statistical Inference

* Three Paradigms of Inference
* Frequentists
» Likelihood
* Bayesian
* Differences are sometimes controversial
* Scientists use the one that best fit their problem




Bayes Theory

Thomas Bayes — 17" Century Mathematician and minister
Developed the theory of Inverse Probability
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Bayes Theory
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Unobserved quantities are treated as Random variables
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Modeling sequence
| |

Deterministic
process model

Existing theory, scientific

objectives, intuition

Collect
observations

Model implementation

Write code [

Implement on

simulated data

Implement on real © ©

data
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Models

# likelihood

for (i

mu[i] <- betal + betal*x[i]
y[i] ~ dnorm(mu[i], tau)
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Deterministic process model

Process model Variance model
g(BJXI)=BO+31Xi g(BJXI?=BO+B1Xj+€
DMI~45+191x DMI ~ 4.5 + 1.91x + variance
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Conditional Probability




Random variables

World 1s divided into things that are observed and things that are unobserved

1. Bayesian treat all unobserved quantities as random variables
2. Values of random variables are governed by chance

3. Probability distributions quantify “governed by chance”
Where chance occurs
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Random variables

* Model parameters
* Latent states
* Missing data

e Predictions and forecasts

* Observations
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Three rules of probability

1. Conditional probability
2. Law of total probability
3. Chain rule of probability

Think proportions of groups, subgroups,
and contingencies.
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Defining the sample space

* The set of all possible values of a random variable
» The sample space, S has a specific area
A specific value is an event or outcome
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Conditional Probability

Conditional probability: the probability of an event given that we know another
event has occurred.

* What 1s the probability of event B , Given we know Event A4 has occurred

Pr(B|A) = Pr(A,B) / Pr(A) )




Independence

Event A and B are independent if the occurrence of A does not tell us anything about
B

Pr(A|B) = Pr(A)
Pr(B| A) = Pr(B) Pr(A|B) = area of A and B / area of B

Pr(A|B) = area of A/ area of S

Can be rearranged

Pr(A,B) = Pr(A|B)Pr(B)
Pr(A,B) = Pr(B|A)Pr(A)




Law of Total Probability

Pr(A4) 1s unkown, but can be calculated using the known probabilities of several
events

B :n=1,23,... define the entire sample space S

Sample Space S




Law of Total Probability

Sample Space S

Rearranging the expression of conditional probability
Pr(A,B) = Pr(A|B)Pr(B)
Pr(A,B) = Pr(B|A)Pr(A)




Probability of Event A”?

Pr(A) =) Pr(A|B,)Pr(B,) = > Pr(A,B,) discrete case
Pr(A) = |Pr(A|B)Pr(B) B = [Pr(A,B)B continuous

Sample Space S




The Chain Rule of Probability

The chain rule of probability allows writing joint distributions as a product of
conditional distributions.

Pr(zl, z2....,zn) = Pr(zn|zn-1,...z1)Pr(zn-1|zn-2..,z1)Pr(z2|z1)Pr(z1)

e /’s can be scalars or vectors

* Sequence does not matter

* Choose a sequence that makes sense




Chain Rule of Probability

Pr(zl, z2....,zn) = Pr(zn|zn-1,...z1)Pr(zn-1|zn-2..,z1)Pr(z2|z1)Pr(z1)




Factoring joint probabilities

Directed Acyclic Graph
A
/"\ Represents [A|B,C][B][C]
B C

* DAGs (Bayesian Networks) specify how joint distributions are
factored into conditional distributions

* Nodes at the heads of arrows must be on the left side of
conditioning symbols

* Nodes at tails must be on the right side of conditioning symbols

* Any node without an arrow leading to it must be expressed
unconditionally
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Probabillity .
Distributions
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PARANORMAL DISTRIBUTION
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What we need to know

* Probability distribution are our toolbox for fitting models to data and representing
uncertainty

* Moments are how we summarize probability distributions

* Every distribution 1s supported by underlying data

* The data type defines the support for the distribution




Consider a Linear Function

Y=mx+5b

* y = f(x) 1s a function of x, with fixed values m and b each value of x gets mapped
to as single f(x)

e x 1s our variable of interest
Random Variables

* Sample space encompasses all possible outcomes from a random process

* Arandom variable is a function from a particular sample space to real numbers




Probability distribution components

Normal Real numbers

Lognormal Positive real numbers a mean of log of z u, 02
p the standard deviation of
the log of z

Gamma Positive real numbers o = shape,  =rate u, o°

Beta Real numbers [0,1] or (0,1) a, B

Bernoulli 0orl ¢ probability that random u = ¢
variable equals 1 o’ =¢p(1-d)
d=u

Binomial Counts in two categories with n number of trials u=ng

upper bound ¢ probability of success 0’ = ng(I1-¢)

Negative binomial  Counts A the mean number of u=»x

occurences 22=A+tN/k

k dispersion parameter
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Example Processes

Item Pregnancy check cows Weaning heifers

Random process Pregnancy check cows Body mass

Possible outcomes Pregnant or Not-Pregnant Any amount of mass

Random variable X = number of pregnant cows Y = amount of body mass
Support Sx = {0,1} Sy:y>0

O L) CR VLT RO @ GG M Pr(Pregnant) = Pr(X=1) Pr(>500Ib heifer) = Pr(Y > 500)
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Frequency distributions

Normal Distribution Log-Normal Distribution
hist(rnorm(n = 10000, mean = O, sd = 1)) hist(rlnorm(n = 10000, mean = @, sd = 1))

Histogram of rnorm(n = 10000, mean =0, sd = 1) Histogram of rinerm(n = 10000, mean =0, sd = 1)
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rnorm(n = 10000, mean =0, sd = 1) rinorm(n = 10000, mean = 0, sd = 1)
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Probability distributions

Normal distribution

plot(density(rnorm(n=10000, mean=0, sd=1)))
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density(x = rnorm(n = 10000, mean = 0, sd = 1))
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Log-Normal distribution

plot(density(rlnorm(n=10000, mean=0,

sd=1)))
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Steer body-weight

u=500

sd=50

a = log(u) - 0.5*1log((sd”2 + u”2)/u”2)
B = sgrt(log((sd*2 + u”2)/u”2))

plot(density(rlnorm(10000,a,B)))
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Density
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density(x = rlnorm(100, a, B))
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N =100 Bandwidth = 3.706e+07




Probability of observeing a steer > 600 Ibs

plot(density(rgamma(1000, shape

abline(v=600, col = 'red’)
pgamma(q=600,shape = a, rate =
1-pgamma(g=600,shape = a, rate
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Probability of observing a steer between 525 an

675

plot(density(rgamma(1000, shape
"blue’)
"blue')

a, rate

abline(v=525, col
abline(v=675, col
pgamma(q=675, shape

pgamma(q=525, shape
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Density
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Bayesian Credible Interval

density(x = rgamma(1

e=a,ra
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Day-to-day variability in DMI
effect on DMI and Gain




DMI is known to vary from day to day within animal
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Variables

* Dry Matter Intake (DMI)

* Average Dry Matter Intake (uUDMI)

» Standard Deviation of Dry Matter Intake (sdDMI)

* Coefficient of Variation of Dry Matter Intake (cvDMI)




Define hypothesis

* Animals with increased variability in day-to-day feed intake exhibit lower DMI
and lower average daily gain
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Find prior knowledge
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Results and Discussion

Growth and performance

Performance, feed efficiency, and ultrasound least squared
means are presented in Table 3. The initial age of steers at the
start of the trials averaged 290 + 16 d and ranged from 280 to

> | 313 d. The means and SD for ADG and DMI were 1.71 + 0.26

and 10.1 = 1.1 kg/d, respectively, which are consistent with

o growth patterns expected from steers of this breed, weight, and

age class. In this study, variation in ADG and mid-test BW="=
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Factor out model

* Deterministic model: y1= o + B1x1
 Conditional model: [B,0%|y] « [y|Bo, B1, o?]
* Factored conditional model: [B,0%y] « [y|Bo, B1, o?][Bo][B1][c?]

* Define posterior distribution model:
* [B.o’ly] & [] Normal(yi| g(Bo,p1,xi), 6%)
X Normal(Po| 2.29, 0.42)

X Normal(f1] 2.29, 0.42)
X uniform(oc| 0, 2)




Define Jags Model

@ RStudio File Edit Code View Plots Session Build Debug Profile Tools Window  Hel}

[ X N ] AS791_FundQuantThink - RStudio

B - % & - = M & [ A Gotofile/function | B8 - Addins -

R} FittingBayesianModelR.R — =

4@ A  SourceonSave ® ERin & 4 § E)Source -~
58
59
60« ## Jags model ----
61 # Define the model
62 model_string <- "
63 model {
64 for (i in 1:N) {
65 y[i] ~ dnorm(mu[i], tau)
66 mu[i] <- beta@® + betal * x[i]
67 }
68
69 # Priors
70 beta® ~ dunif(-10, 10)
74il betal ~ dunif(-1, 1)
72 sigma ~ dunif(@, 100)
73 tau <- 1 / (sigma * sigma)
74
75
76
77 # Data
78 data_list <- list(
79 x = d.dmis$cvDMI, # Example predictor values
= d.lan$Day56_ADG, # Example response values
81 N = nrow(d.lan) # Number of observations
82 )
83
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Results
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Prior, posterior, and joint distributions

View a larger version of the plot in a new window
Beta 1

1.5

1.0

Density
0.5
I

Green — Prior
i I i T i | Blue — Posterior
2 -1 0 1 2 3 Red - Joint

N =5000 Bandwidth =0.09489
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Basics of Bayesian

* Unobserved quantities are random

* Probability is contingent upon the sampling space and definition of the problem
* Joint probabilities are used to quantify likelithood

* Probability distributions are used to describe frequency of data occurring

* Moments are distribution parameters, defining where the data exists in a sampling
space

* Choose distributions based upon your data type

* Graph Probability distributions
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