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Agriculture 4.0 – The 4th Agricultural Revolution

• We are witnessing the fusion of animal production systems with emerging 
digital technologies and automation

• Barriers of the past:
Data capture abilities
Efficient data capture/Lack of automation
Appropriate analytical tools for data processing and analysis

• Opportunities of the future: 
  System Optimization and Decision Support
  Full automation of some aspects of the animal production chain



A Case Study: Feed Manufacturing

The Story of:
A botched 

experiment
(oops)



Feed Pelleting

“Agglomerated feed formed by extruding individual ingredients or mixtures of 
ingredients by compacting and forcing them through die openings by any 
mechanical process” (Okewole and Igbeka, 2016)

Benefits

         1. Improve animal performance
 Increase digestibility
 Reduced feed sorting/wastage
 Improved FCR

         2. Improve physical characteristics
 Increase flowability
 Increase density



Pellet Quality

 The ability of pelleted feed to withstand 
fragmentation and abrasion during 
handling and maintain structural 
integrity

Good quality Poor quality

 The widely used measure for pellet quality

 The proportion of the remaining pellets to 
the whole pellets after the pellet durability 
test

 Two pellet durability test methods: Tumbling 
and Holmen

Holmen tester

Pellet Durability Index (PDI)



Pellet Quality Is Impacted by:

 Conditioning temperature (Massuquetto et al., 2018)

 Fibre content (Zimonja et al., 2008)

 Moisture (Moritz et al. 2003)

 Particle size (Stevens, 1987)

 Fat content (Hossein et al, 2019)

 …

 Anecdotally – Mill Operator



Predicting PDI - The Knowledge Gap

1. Most studies consider only a few factors at a time, and under controlled 
experimental conditions

2. Only one study had built empirical equations to describe pellet quality under 
commercial settings

Gilpin, A. S., Herrman, T. J., Behnke, K. C., & Fairchild, F. J. (2002). Feed moisture, 
retention time, and steam as quality and energy utilization determinants in the pelleting 
process. Applied Engineering in Agriculture, 18(3), 331.
Moisture (Two levels: 12 and 14%) 
Conditioning time (Two levels: short and long) 
Steam quality (Four levels: 70, 80, 90, and 100%)

Example:

Schroeder, B., Andretta, I., Kipper, M., Franceschi, C. H., & Remus, A. (2020). 
Empirical modelling the quality of pelleted feed for broilers and pigs. Animal Feed 
Science and Technology, 265, 114522.

Example



Research Question

Can we predict PDI in the commercial feed mill setting? 

Application – can we use the model to optimize pellet 
quality (and other aspects of manufacturing)?



Study 1 - Research Question

Can we develop PDI prediction models via a 
meta-analysis of the published literature?



Study 1 - Data

• Systematic review conducted in 
2024

• 280 treatment means from 29 
studies

• PDI measured via ASAE method
• 16 variables:

• Feed Ingredients (5)
• Manufacturing parameters (6)
• Nutrient composition (5)



Study 1 – Model Building Pipeline

Variable Selection:
• Removed features reported in less than 

6 studies
• Removed features with limited within-

study variation
Model Development:

• Mixed model analysis, treating study as a 
random effect

• Evaluated for:
• Outliers via CooksD test
• Normality of residuals
• Multicollinearity between features
• Significance (P < 0.05)



Study 1 – Model Evaluation

3-fold cross-validation
 studies moved into folds

Evaluation measures
 Mean square prediction error (MSPE) (Bibby & Toutenburg, 1977)
 Concordance Correlation Coefficient (CCC) (Lin, 1989)
 Visual evaluation of plots



Study 1 – Results Table 1 Estimated parameters of the selected bivariable models.  
Model Parameter Estimate Standard Error P-Value 

Model 1 
Intercept 2.975 0.3266 <0.0001 
Corn -0.011 0.0048 0.0269 
Lipid -0.144 0.0280 <0.0001 

Model 2 
Intercept 1.094 0.7425 0.1434 
Corn -0.013 0.0047 0.0090 
Steam Temperature 0.020 0.0082 0.0135 

Model 3 
Intercept 1.948 0.2736 <0.0001 
Lipid -0.137 0.0283 <0.0001 
Soybean Meal 0.013 0.0049 0.0130 

Model 4 
Intercept 0.003 0.6918 0.9966 
Soybean Meal 0.016 0.0052 0.0026 
Steam Temperature 0.020 0.0081 0.0179 

Model 51 
Intercept 1.501 0.3636 0.0001 
Lipid -0.132 0.0280 <0.0001 
Protein 0.041 0.0130 0.0019 

1 One observation was removed for Model 5 due to the Maximum Cook’s Distance greater than 0.5.  

Table 1 Model evaluation for the selected bivariable models using 3-fold cross-validation.  
Model1 rMSPE (%) MSPE ECT (%) ER (%) ED (%) CCC   

Model 1 7.79 ± 0.835 42.65 ± 8.541 15.2 ± 23.75 0.9 ± 0.51 83.9 ± 23.75 0.25 ± 0        

Model 2 8.01 ± 0.206 48.51 ± 2.062 6.4 ± 9.96 12.1 ± 12.88 81.6 ± 8.29 -0.02 ± 0        

Model 3 7.62 ± 1.702 41.76 ± 16.864 2.3 ± 2.60 2.0 ± 1.75 95.7 ± 1.04 0.17 ± 0        

Model 4 7.81 ± 0.285 46.16 ± 2.930 3.8 ± 6.38 6.0 ± 8.99 90.1 ± 8.50 0.02 ± 0        

Model 5 10.33 ± 1.167 77.90 ± 20.929 17.0 ± 17.28 29.8 ± 29.51 53.2 ± 24.37 0.29 ± 0        

  



Study 1 – Conclusions/Application 

• Simple models were developed based on published literature - easy to implement 
in practice (ie. simple formula to add into Brill/BESTMIX etc. software to predict 
PDI)

• How would they perform in a commercial mill…?

Root MSPE (%): 9.2604 
MSPE: 72.48748 
ECT (%): 77.448389 
ER (%): 9.810557 
ED (%): 12.741053 
CCC: -0.033753 
Pearson Correlation: -0.181764 
Bias Correction Factor (Cb): 0.185695 

Can we do better…?



Predicting Pellet Quality at the Mill Level 
Using Machine Learning

Jihao You (PhD Candidate) 

Supervisor: Dr Jennifer Ellis

Co-supervisor: Dr Dan Tulpan

UG-T1-2020-100167
(Jan 2020 - Dec 2023)
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Why Might ML be a Good Tool for the Feed Mill?

 Feed mills are naturally ‘big data’ generators:

Volume – large enough that it prevents visual inspection & processing 
on a conventional computer

Variety – both the type and nature of the data. digital images, on-line & 
off-line video recordings, environmental sensor output (e.g. temp, 
movement, activity), animal biosensor output (e.g. indwelling pH 
probe, temperature, redox potential), sound recordings, omics data

Velocity – typically produced and (mostly) analyzed in real-time

Veracity – data quality -  it is often not ‘clean’, containing missing 
observations, confounding variables and outliers 



Study 2 - Data

Based on data hand-collected between March 31, 2020 – Nov 27, 
2020, at Trouw Nutrition - St. Marys Plant 2

• Data included 1,434 observations and 17 variables

• Data were split into two subsets: 
• 80%: For model construction with a 5-fold cross-validation technique
• 20%: For independent model evaluation

• 12 Machine learning (ML) algorithms were applied and compared



Study 2 - Data

Index Feature Sources Types
1 Aver. Daily Temp. (℃)

Environment

Continuous 
features

2 Aver. Daily  Humidity (%)
3 Aver. Daily Pressure 
4 Wheat (%)

Feed 
formulation

5 Bakery (%)
6 Canola (%)
7 Soy (%)
8 DDGS (%)
9 Corn (%)

10 Fat (%)
11 Order Size (Tonne)

Manufacturing

parameters

12 Feeder Speed (%)
13 Cond. Temp. (℃)
14 Product Line Categorical 

features15 Spec. (Types)
16 Operator
17 PDI Output

Environmental Data: 
https://www.wundergro
und.com/history  

https://www.wunderground.com/history
https://www.wunderground.com/history


Study 2 – Results – Learning Curves



Study 2 – Results – Feature Importance

ABR: Adaptive Boosting 
Regression 
DT: Decision Tree
GBR: Gradient Boosting 
Regression
KNN: K-Nearest Neighbor 
LASSO: Least Absolute 
Shrinkage and Selection 
Operator Regression LR: 
Ordinary Least Square Linear 
Regression
LSVR: Linear Support Vector 
Regression
MLP: Multi-Layer Perceptron 
Neural Network
RF: Random Forest
RR: Ridge Regression
SVR: Support Vector 
Regression SR: Stacking 
Regression



Study 2 – Results – Model Evaluation

CCC = 0.56 CCC = 0.53CCC = 0.53CCC = 0.64

CCC = 0.50CCC = 0.53CCC = 0.53CCC = 0.64



Study 2 – Results – Model Evaluation

CCC = 0.56 CCC = 0.53CCC = 0.53CCC = 0.64

CCC = 0.50CCC = 0.53CCC = 0.53CCC = 0.64



Study 2 - Publication



Study 2 - Application Development

http://137.184.153.27:8050/



Study 2 – Lessons Learned

Hand collection and recording of data is not feasible  long-term!



Study 3 - Data

Based on automated data capture (ENGIE) between 2021-2022, at 
Trouw Nutrition - St. Marys Plant 2

• Data included 2,691 observations and 76 variables 
  (expanded manufacturing, nutrition and environmental data  
  compared to Study 1)

• Data were split into two subsets: 
• 80%: For model construction (10-fold cross-validation), 
• 20%: For model evaluation

• Comparative research:
Study 3a: Statistical models (3 models with linear effects)
Study 3b: Machine learning models (12 ML models)
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Study 3 - Data

Factors Considered:

• General information on the feed run (4 variables) 
• Manufacturing parameters (11 variables)
• Usage of ingredients (41 variables)
• Environmental factors (12 variables)     Recorded by data loggers
• Nutrient composition of diets (8 variables)    Provided by Trouw

Collected by Engie
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Study 3 – Data – Temperature/Humidity Probes

Data loggers 
were located in 
the feed plant 
for ambient and 
indoor 
environmental 
factors
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Study 3a – Results – Statistical Model 

Variables selected for modelling in the best statistical 
model:

Independent Model Evaluation (20%):
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Study 3 – Publication
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Study 3b – Results – ML Models 

Independent Model Evaluation (20%):

SVR is the best model
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Study 3b – Results – ML Models 

Variable importance ranking of SVR (the best model):

CT: Conditioning Temperature
ET: Expanding Temperature
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Study 1, 2, 3a, 3b – Take Home Messages

Important variables for PDI prediction - across models:
• Fat, Protein, Starch Content in diet (%)
• Expanding Temperature (°C)
• Soybean Meal (inclusion %) 
• Cumulative Production (since the change of pellet mill die) 
• Indoor Humidity (around Pelletizer, %) 
• Species 
• Feeder Speed (%)
• Wheat shorts(%)
• Bakery (%)

Is anything missing in data collection?
•  Perhaps particle size
•  How ‘reproducible’ is the PDI measure (sampling error?)

Combination of 
nutrition, 
manufacturing 
and 
environmental 
factors
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…So what next?



Optimization of Pellet Quality using 
Machine Learning - 2.0

OMAFA Alliance Grant
UG-T1-2023-102187

(Jan 2024 – Dec 2025)
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PDI 2.0 – Project Objectives

1. To expand the current ML PDI prediction project to include multiple mills 
across several feed manufacturing companies,

2. Development of a ‘generalized model’ for application across mills (and 
comparison to models developed on each mill separately)

More variable data -> more robust model

3. Development of an optimization algorithm (given a desired PDI, what 
inputs should change?)
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Study 4 – MFS - Data

Objective: Develop an algorithm to predict both PDI and Duration (hrs):

Data: 5721 observations (May 5, 2022 – April 30, 2024)
• Manufacturing parameters (4 variables)
• Usage of ingredients (22 variables)
• Environmental factors (8 variables)      Recorded by data loggers
• Nutrient composition of diets (7 variables)    Provided by MFS
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Study 4 – MFS – Model Development

Machine learning model construction using all features

Feature selection

Machine learning model construction using the selected  
features

Feature importance ranking
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80%: 5-fold cross-
validation,
20%: evaluation

80%: 5-fold cross-
validation,
20%: evaluation



Study 4 – MFS – PDI Model Results

SVR is the best model for PDI prediction
(No. of features = 41)

Beeswarm plot of SHAP values for PDI
(No. of features = 24)
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Study 4 – MFS – Duration Model Results

SVR is the best model for Duration prediction
(No. of features = 41)

Beeswarm plot of SHAP values for Duration
(No. of features = 24)
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Study 4 – MFS – Model Interface
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Results Summary for PDI prediction (Thus Far)

Model Model 
Type

No. 
Observations

Number of 
features Top Influential Features CCC7

Meta-
Analysis1 Statistical 280 Obs from 

29 Studies 3 Protein(%), Lipid(%) 0.29

Model 12 ML 1,434 16 Outdoor Temperature (DegC), Bakery(%), Wheat(%), 
Corn(%), Feeder Speed 0.64

Model 2a3 Statistical 2,691 9 Expanding Temperature (DegC), Lipid(%), ADF(%), 
Indoor Humidity (at Pelletizer, %) 0.55

Model 2b4 ML 2,691 74+ Bakery(%), Ambient Temp(DegC), CP(%), Starch(%), 
Conditioning Temp (DegC), ADF(%) 0.61

Model 35 ML 5,721 41 Hammered Corn(%), Mixer Fat (%), Feeder Speed 
(%), Horsepower (Kw), Fine Hammered Wheat %) 0.76

Model 3b6 ML 5,721 24 Ash (%), Minerals (%), CP (%), Shorts (%), Mixer Fat 
(%), Fine Hammered Wheat %), Bakery(%) 0.74

1 Models not shown today
2 TN ML model developed on hand-collected data
3 TN statistical model developed on automated data collection
4 TN ML model developed on automated data collection

5 MFS ML model – all features
6 MFS ML model – feature selection, refit
7 Independent evaluation
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PDI Prediction

Can we do any better?
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Mechanistic Modelling?

Prediction of: 
 outflowing particle size distribution
Driving variables:
 inlet mass feed rate

Product density
Hammer rotational speed
Mill residence time
Sieve aperture size

Feedstuffs:
 corn, barley, faba beans, SBM, rapeseed 

meal, sunflower meal, wheat 
middling’s, corn DDGS

Prediction of particle size reduction using a hammer mill
 (Rijpert et al., 2025)

Modelled components: 
 breakage kernel, breakage rate, screen 

selection functions (8 modelled parameters)

Outcome: 
 Sensitivity analysis revealed that mill 

residence time explained the majority of 
output variance.



Mechanistic Modelling?
“Under which processing conditions do loose pellet ingredients 

bond into rigid, durable pellets?” (Benders et al., 2025)

Conducted systematic pilot-scale extrusion 
trials, manipulating:

• Steam conditioning temperature
• Production (throughput) rate
• Die geometry and residence time

Introduction of “Stickiness Temperature” (T*)
 The critical onset temperature at which 

enough enthalpic activity occurs – typically from 
moisture, heat and friction – to enable bond 
formation within the pellet



Mechanistic Modelling?
“Under which processing conditions do loose pellet ingredients 

bond into rigid, durable pellets?” (Benders et al., 2025)

Pellet agglomeration does not occur below T*, 
the boundary condition for stickiness

T* - not a fixed universal value, but rather 
specific to each mash formulation

• Defined as: the lowest in-barrel 
temperature where:
• Pellet durability and strength 

increased sharply
• A visible structural transformation in 

the pellet occurred
• Energy efficiency plateaued 



Opportunity for Hybridization of Approaches?

• Introduction of new features to the ML models:
• Delta Tc
• Delta Td

• ML models could be used to define T* per mash?

• Mechanistic prediction of particle size -> input to ML model?



What Next?

• The ‘generalized’ model

• Model approach hybridization/combination

• LCA – trade offs between the mill and farm (energy expenditure vs 
animal performance)

• Established data pipelines -> endless opportunities for further data 
analysis (in-house or in collaboration)
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Challenges

 Data pipelines need to be established to allow analysis (but the data is 
there) - Hand collection of big data is not sustainable

 Some important information is not routinely collected (particle size?)

 Not all data is useful - but we won’t know unless we look?

49
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Thank you!

Contact (Jen): jellis@uoguelph.ca
Contact (Jihao):  jyou03@uoguelph.ca 

51

mailto:jellis@uoguelph.ca
mailto:jyou03@uoguelph.ca

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51

