Protein Analysis Methodology

ASDA NANP Symposium Glen Broderick USDA-ARS (retired)

- 1. Elemental N Analysis Can Replace Kjeldahl
- 2. Quantifying RDP & RUP
 - a. In Situ Methods (Comments; Problems)
 - **b.** New Methodology Needed
 - c. Intestinal Digestion of RUP
- 3. Quantifying Microbial Protein Formation
- 4. Amino Acid Analysis (AAA)
 - a. Losses During Protein Hydrolysis
 - **b. Separation & Detection Methods**
- 5. Milk Urea

Kjeldahl vs. Elemental N (Dumas Assay)

Elemental N (Dumas Assay) vs. Kjeldahl

In Situ Incubations in the Rumen

Data Analysis for First-Order Models

DEPARTMENT OF DATRY SCIENCE University of Wisconsin-Made

In Situ Protein Degradation

(Huhtanen & Ahvenjarvi, 2022)

- 1. NASEM (2021) Still Using In Situ Because of Large Literature Base on Methodology & Data
- 2. Soluble CP Leak Out (Assumed Escape = 6.4%)
- **3. Microbial Contamination Inside Bag (Especially Low CP Feeds)**
- 4. Single kp-Values for Concentrates & Forages
- 5. No Accounting for Passage & Degradation Lags
- 6. What about Fraction C, Including ADIN (Useful or Indigestible?)

NRC-2001 vs. NASEM-2021 kp

- 1. Lowered kp (Reduces RUP):
 - a. NRC-2001: (DMI = 4.0% BW)
 - b. NASEM-2021: (Seo et al., 2006)
- 2. **RUP Estimates:**
 - a. NRC-2001 (kd): (DMI = 4.0% BW)
 b. NASEM-2021 (kd): (A = 6.4% escape)

Wet Forages = 0.055/h Concentrates = 0.067/h Forages = 0.053/h Concentrates = 0.049/h

Solvent SBM (.075) = 43% RUP Canola Meal (.104) = 36% RUP Solvent SBM (.090) = 33% RUP Canola Meal (.105) = 30% RUP

Rumen Passage Rates Vary with Phase & Especially Animal

Source	Phase (Marker)	Mean (/h)	Range	
Broderick (1985)	Liquid (Cr-EDTA)	0.17	0.12-0.22*	
Reynal (2003)	Liquid (Co-EDTA)	0.13	0.07-0.26	
Reynal (2003)	Small particles (Yb)	0.14	0.08-0.23	
Brito (2007)	Solids (Protmordant)	0.05	0.03-0.07	

*Significant Animal Effect (P < 0.05)

Rumen Passage Rates Vary with Phase & Especially Animal

Source	Phase (Marker)	Mean (/h)	Range		
Broderick (1985	5) Liquid (Cr-EDTA)	0.17	0.12-0.22*		
Liquid Rates	(Soluble NAN) 3X > So	olids (Insol	uble NAN)		
	Wide Animal Varia	tion			
Brito (2007)	Solids (Protmordant)) 0.05	0.03-0.07		

*Sgnificant Animal Effect (P < 0.05)

NRC-2001 vs. NASEM-2021 kp & RUP

- 1. Lowered kp (Reduces RUP):
 - a. NRC-2001: (DMI = 4.0% BW)
 b. NASEM-2021: (Seo et al., 2006)
- 2. **RUP Estimates:**
 - a. NRC-2001 (kd): (DMI = 4.0% BW)
 - b. NASEM-2021 (kd):

(A = 6.4% escape)

Wet Forages = 0.055/h Concentrates = 0.067/h Forages = 0.053/h

Concentrates = 0.049/h

Solvent SBM (.075) = 43% RUP Canola Meal (.104) = 36% RUP Solvent SBM (.090) = 33% RUP Canola Meal (.105) = 30% RUP

True Proteins Contribute to Microbial Protein & Different RUP (Brito et al., 2007)

Diets					
Item	Urea	Soybean Meal	Cottonseed Meal	Canola Meal	Prob.
RUP, kg/d	0.54 ^c	0.99 ^b	1.35 ^a	1.15 ^{ab}	<0.01
Microbial protein, kg/d	2.34 ^b	2.71 ^a	2.71 ^a	2.78 ^a	0.04
Milk protein yield, kg/d	0.92 ^c	1.23 ^{ab}	1.18 ^b	1.27 ^a	<0.01

 $\frac{\text{Omasal Flows}}{\text{Diets} = \text{Alfalfa & Corn Silages} + \text{High Moisture Corn; 16.5\% CP}}_{a-c}(P < 0.05)$

AIRY SCIENC

In Situ Protein Degradation (Huhtanen & Ahvenjarvi, 2022) 1. NASEM (2021) Continues Using In Situ Because of We Should be Looking at

Alternative Methods for RDP/RUP

- 1. Micr. Prot. Stimulated by RDP
- 2. RUP Varies in Value
- 5. No Accounting for Passage Lag
- 6. No Accounting for Degradation Lag
- 7. What about Fraction C, Including ADIN (Useful or

Indigestible?)

V

Quantifying In Vitro Degradation

Rate from End-Product Appearance

- 1. Rumen Inoculum with Inhibitors of Microbial Growth ("MMIIV" Method)
 - a. Appearance of TCA Soluble-N
 - b. Appearance of NH₃, AA & Peptides
- 2. Ruminal Inoculum Using:
 - a. Gas Production to Quantify Microbial Growth ("Menke-Raab")
 - b. Marker to Account for Microbial Growth (¹⁵N)
- 3. Utilizable CP (RUP + Microbial CP)
- 4. Use of Proteolytic Enzymes

Quantifying In Vitro Degradation

Rate from End-Product Appearance

- 1. Rumen Inoculum with Inhibitors of Microbial Growth ("MMIIV" Method)
 - a. Appearance of TCA Soluble-N
 - b. Appearance of NH₃, AA & Peptides
- 2. Ruminal Inoculum Using:
 - a. Gas Production to Quantify Microbial Growth ("Menke-Raab")
 - b. Marker to Account for Microbial Growth (¹⁵N)
- 3. Utilizable CP (RUP + Microbial CP)
- 4. Use of Proteolytic Enzymes

Michaelis-Menten Inhibitor Invitro (MMIIV) Method (Colombini et al., 2011).

Degradation rate (Theta) estimated as the tangent through the origin of the velocity vs. substrate concentration ([S]) curve:

Theta = Vmax/Km Adjusted kd = Theta – Degrad (t = 0)

Mean Responses (Leu = 1.0) of AA & Peptides to OPA-Absorb. or Fluor.

Source	OPA-Absorb.	OPA-Fluor.		
20 Protein AA	0.95	0.81		
19 Protein AA (w/o Pro)	1.00	0.85		
12 Dipeptides	1.04	0.16		
14 Tri- & Oligopeptides	1.02	0.11		

OPA = *O*-Phthalaldehyde

SBM Degradation Estimated by Net Release: NH₃ + TAA (OPAF, ■) NH₃ + TAA + Peptides (OPAC, □)

Menke-Raab Gas Production Method

Hohenheimer Gas Production System (Menke et al., 1979)

Schematic Representation of Protein Degradation & Protein Synthesis in Vitro

(Raab et al., 1983)

A = NH₃ From Feed Alone B = NH₃ from Feed + Starch C = Gas Production from Feed Alone D = Gas Production from Feed + Starch E, F, G = Microbial N from NH₃, AA, Peptides from Feed Alone H = NH₃ Expected at 0-Gas Production

Estimation of Degradation Rates from Gas Production Data (24 h data; Raab et al., 1983)

Intercept	Net N	IVDN	kd
(mg NH	[₃ -N)		/h
8.80	4.12	0.990	0.194
8.61	3.93	0.945	0.121
8.19	3.51	0.844	0.077
	Intercept (mg NH 8.80 8.61 8.19	Intercept Net N (mg NH ₃ -N) 8.80 8.80 4.12 8.61 3.93 8.19 3.51	Intercept Net N IVDN (mg NH ₃ -N) 0.9900 8.80 4.12 0.9900 8.61 3.933 0.9455 8.19 3.51 0.8444

r = -0.993-0.998 Added N = 4.16 mg Blank = 4.68 mg NH₃-N

Protein Degradation Rates using Proteases from Mixed Rumen Microbes or Strep. Griseus

(Mahadevan et al., 1987)

	Protease Source			
Protein	Rumen microbes	S. griseus		
	(mg protein degraded to AA/h)			
Corn Gluten Meal	0.37	0.35		
Fish Meal	0.62	1.65		
Soybean Meal	1.06	0.70		

Calsamiglia & Stern (1995) 3-Step In Vitro Method

- 1. Rumen In Situ Incubation of Protein (16-h)
 - a. 1/0.06 ≅ 16 h (not = Escape at kp = 0.06/h)
 - b. kp & kd both = 0.06/h, t = 11.6 h
 - c. Probably OK for Intest. Digestibility
- 2. Protein Incubated with Pepsin (0.1 N HCl; 1-h)
- 3. Protein Incubated with Mixed Pancreatic Enzymes (pH 7.6; 24-h)
- 4. Generally Lower Digestibilities than Mobile Bag

Ross et al. Modification of Calsimiglia-Stern (Gutierrez-Botero et al., 2022)

- 1. In Situ Bags Replaced by Rumen In Vitros in Flasks
- 2. Set 1—Undegraded CP Trapped:
 - a. Micro-Pore Filters or Freeze-Drying ("Soluble" Feeds)
 - b. Blank Corrected for Microbial CP (NDF Flasks)
- 3. Set 2—Rumen In Vitro Run, Followed by
 - a. 1-h Treatment w/ Pepsin (2 N HCl), then
 - b. 24-h Treatment w/ Trypsin, Chymo., Amylase & Lipase
 - c. Blank Corrected for Microbial CP (NDF Flasks)
- 4. Computations:
 - a. Set 1 = RUP; Set 2 = Total Undigested CP
 - **b.** Set 1 Set 2 = Intestinally Digested RUP (AA Analysis)

Microbial Protein Markers: ¹⁵NH₃ vs. Purines (Reynal et al., 2005)

	Dietary RDP, % of DM				Linear	
Microbial Eff.	13.2	12.3	11.7	10.6	Prob.	
¹⁵ NH ₃ (g NAN/kg omtdr)	32.3 ^a	30.1 ^b	28.1°	28.0 ^c	<0.01	
Total Purines (g NAN/kg omtdr)	28.4	27.1	26.4	26.8	0.17	

<u>Omasal Flows</u> ^{a,b,c}(RDP affect P < 0.01)

Microbial Protein Markers: ¹⁵NH₃ vs. Purines (Reynal et al., 2005)

	Dietary RDP, % of DM				Linear	
Microbial Eff.	13.2	12.3	11.7	10.6	Prob.	
¹⁵ NH ₃ ¹⁵ NF (g NAN Total Pu	I ₃ is Best trines M	: Microb ore Vari	oial Mar able as	ker; Marke	<0.01	
Total Purines (g NAN/kg omtdr)	28.4	27.1	26.4	26.8	0.17	

<u>Omasal Flows</u> ^{a,b,c}(RDP affect P < 0.01)

Amino Acid Analysis—Moore & Stein

Time-Course of AA Release During HCl Hydrolysis (Lapierre et al., 2019)

Protein Analysis Methodology

AIRY SCIENCE

Laboratory AA Analyses

Source	Item	Comments
AAA with ¹⁵ N or ¹³ C Std AA	Calder et al., RCMS 13: 2080, 1999	Greater Accuracy & Precision
AAA by NIRS (Evonik)	Developed Calibrations (Fontaine et al., JAFC Vol. 49-52, 2001-06)	Various Feeds & Foods; Collaborative Studies; Calibration Available
Univ. of Missouri Labs	Chromatographic AAA	Relatively Expensive
Dairyland Lab	Both Chrom. & NIRS	All AA or NASEM AA
Cumberland Valley	Both Chrom. & NIRS	Large NIRS AA Database
Rock River Lab	NIRS Total AA; Table Feed Compostions	Satisfied w/ results

DEPARTMENT OF

Distribution of NIRS AA-N (% Total CP) in Haylage (Ward; CVAS; 2022-2025)

Protein Analysis Methodology

AIRY SCIENCE

Jugular Infusions of Met+Lys+His (MKH) & Ile+Leu (IL) on Production (Yoder et al., 2020)

	Treatment				Prob. ³	
Trait	Cntrl ¹	MKH ²	IL ²	MKH+IL	MKH	IL
ECM, kg/d	47.2	48.3	49. 1	50.1	0.14	<0.01
Milk prot., kg/d	1.46	1.52	1.50	1.60	<0.01	<0.01
Milk fat, kg/d	1.68	1.72	1.74	1.74	0.60	0.22
<u>N-eff., %</u>	38.1	<i>38.1</i>	38.3	39.6	0.09	0.19

¹Basal = 1.69 Mcal NE_L/kg DM; **15% CP; RDP Adequate; Met supply/req = 72%** ²MKH = Limiting EAA Effect; IL = Anabolic Signaling ("mTOR") Effect ³MKH x IL Interaction Prob. = 0.18 for N-eff.

Is MidIR-Absorbance Reliable for MUN?

- Early MidIR_{abs} Gave Variable MUN Results
 a. GAB (2003)--MidIR_{abs} Accurate [MUN] (Period-Model)
 - **b.** Recent MidIR_{abs} [MUN] Calibrations Improved (Dave Barbano)
- 2. DHI MUN Data Not Timely to ID Diet Mix-ups
- 3. MUN Assay in the Parlor? (BouMatic MilkGenius)

Summary

- 1. Measure Total N w/ Elemental Analysis (not Kjeldahl)
- 2. Quantifying RDP & RUP
 - a. In Situ Methods Still "Useful"; New Methods Needed
 - **b.** Intestinal RUP Digestion of RUP by 3-Step or Ross Assay
- 3. Measuring Microbial Protein in the Rumen
 - a. Labeling MP w/ ¹⁵NH₃ Superior to Purines
 - **b.** Urinary Purine Derivatives Detect Trt Differences
- 4. Use Lapierre Correction Factors to Account for AA Hydrolysis Losses
- 5. Knowing EAA Supply Essential to Optimizing Milk

MidIR-Absorbance Milk Urea Values are Satisfactory

gbroderi@wisc.edu

