Common Units of Measurement and Unit Conversion

NATIONAL
 ANIMAL
 NUTRITION
 PROGRAM

The two major systems of measurement used in nutrition are the English and Systems International (SI) units of measurement. The SI system of units (often referred to as the metric system) is the official system for measurements in nearly all countries of the world, except the U.S. As with other fields, nutrition requires a global perspective, so the ability to recognize and convert between English and SI (metric) conventions is a critical skill.

Common Absolute Units of Mass

English System

ounce, oz
pound, lb
ton (U.S., short), T

SI (metric) System
nanogram, ng
microgram, $\mu \mathrm{g}$
milligram, mg
gram, g
kilogram, kg
tonne (metric), MT

Common Absolute Units of Energy
English System
calorie, cal
kilocalorie, kcal
megacalorie, Mcal

SI (metric) System
joule, J
kilojoule, kJ
megajoule, MJ

Common (Relative) Units of Concentration

percent, \%
parts per million, ppm
parts per billion, ppb
grams per ton, g / T
calories per gram, cal/g
kilocalories per pound, kcal/lb
IU per pound, IU/lb
IU per kilogram, IU/kg
milligrams per pound, $\mathrm{mg} / \mathrm{lb}$ milligrams per kilogram, mg/kg

Definitions

Calorie:

One calorie (lowercase "c" or cal) is the amount of heat required to raise the temperature of one gram of water by $1^{\circ} \mathrm{C}$ from $14.5^{\circ} \mathrm{C}$ to $15.5^{\circ} \mathrm{C}$. In human nutrition, 1 Calorie (capital " C " or Cal) equals 1,000 calories or 1 kcal . In animal nutrition, we typically work with kilocalories and megacalories, where 1,000 kcal equals 1 Mcal.

International unit (IU):

A standard unit of potency typically ascribed to nutrients (e.g., vitamins) and non-nutritive feed additives (e.g., hormones, antibiotics, antitoxins, etc.). Also referred to as a United States Pharmacopeia (USP) unit in the U.S., an IU must be defined for each substance in terms of the activity relative to a standard (comparator) quantity or preparation.

Unit Conversion

```
1.0 \(\mathbf{l b}=453.6\) grams \((\) commonly rounded to 454 g\()=0.4536 \mathrm{~kg}\)
\(1.0 \mathrm{~kg}=2.205 \mathrm{lbs}\)
1.0 ton (short) \(=2,000 \mathrm{lbs}=907.2 \mathrm{~kg}\)
1.0 tonne (MT) \(=1,000 \mathrm{~kg}=2,205 \mathrm{lbs}\)
\(1.0 \mathbf{o z}=28.35 \mathrm{~g}\)
\(1.0 \mathrm{~g} \mathrm{=} 1,000 \mathrm{mg}=1,000,000 \mu \mathrm{~g}=1,000,000,000 \mathrm{ng}\)
```

```
1.0 kg = 1 }\times1\mp@subsup{0}{}{3}\textrm{g}=1\times1\mp@subsup{0}{}{6}\textrm{mg}=1\times1\mp@subsup{0}{}{9}\mu\textrm{mg}=1\times1\mp@subsup{0}{}{12}\textrm{ng
1.0 ppm = 1 mg/kg = 0.0001% (100 ppm = 0.01%)
1.0% = 10,000 ppm
1.0 cal = 4.184 J
1.0 kcal = 4.184 kJ = 1,000 cal = 1 Cal
```

When converting from one unit of measurement to another, ensure that you cancel out terms to arrive at the correct final units. Because the mathematical operation used in unit conversion is multiplication, simply follow the units in the numerator and denominator. When two terms are multiplied together and have units in opposite locations, they are eliminated from the equation as is the case in the following example calculations:
7.5 lbs of feed $x \frac{454 \mathrm{~g}}{1 \mathrm{lb}}=3,405 \mathrm{~g}$ of feed

Eq $24 \quad 4$ tons of feed $\times \frac{907.2 \mathrm{~kg}}{1 \text { ton }}=3,628.8 \mathrm{~kg}$ of feed

Eq3 3 ppm copper $=\frac{3 \mathrm{mg} \text { copper }}{\mathrm{kg} \text { of feed }} \times \frac{\mathrm{kg}}{2.205 \mathrm{lbs}}=\frac{1.36 \mathrm{mg} \text { copper }}{\mathrm{lb} \text { of feed }}$

