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The Task




The Task

Knowledge



/x\ Regressione

Describes the average, systematic response of the dependent
variable to the independent variables A/ND the expected degree
of variation of the dependent variable for a given set of
independent variables




/x\ Regressione

Describes the average systematic response of the dependent
variable to the independent variables A/ND the expected degree
of variation of the dependent variable for a given set of
independent variables

(in)dependent = (In)puts l dependent = Outputs




Linear Models

What's the
objective?

Before beginning, it's
important to know how
the model results will
be used.




Linear Models

* Description
_@_ * How does the response vary w.rt. the
What's the _3 _Qchmm\.w

objective?

Before Uma_ﬂss@\%w i _U—‘.mQ_ﬁ._“_O_J

important to know how . . cl. .

the model resus wil » Given a set of input conditions, what is
e el the expected outcome? How much

certainty is there in this prediction?




Linear Models

What's the
objective?

Before beginning, it's
important to know how
the model results will
be used.




What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models




Data Exploration

500 1000 1500

0

L J [ 4
Y ]
J o | fr et n e
m ! . © ”o-o.ooo uo»o "n“o oo : ¢
. : c o Ch e el i
. . : . § : > © i, A RIS NI L%
. H ®oces s o3 . .
. $ ‘ 3 . i : Q| HEHE LTINS :
T :
AR R
Ol
40 50 60 70 80 90 100 120 140 160 180
X X

Visually assess plots of the dependent variable vs. independent variables
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Data Exploration
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Plots of dependent variables against each other are an important
step in identifying highly correlated predictor variables




Data Exploration
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Visually look for outliers and remove if:
1) Meets statistical criteria (i.e. more than 2-3 SD from the mean)
2) A review of notes/procedure identifies an abnormality in the collection process



Data Exploration
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Plots of dependent variables against each other are an important
step in identifying highly correlated predictor variables

Extreme values in independent variables, like the plot on the left
should not be removed




What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models .

* Plot, plot, plot!
* visually assess the relationships
between variables and to look for
potential outliers.

« Does the plot reveal a well-defined
relationship? Is this relationship
linear?

* Are the ranges and precisions of the
independent variables sufficient for
yOur purposes?



What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models

N

Model Fitting

Find the ‘best’
numerical relationship
between the
dependent and
independent variables.




Linear Models
(Simple Regression)

Yi = Bo + [1.Xi + €

¢ Y, is the value of the response variable for the /ith observation

& [Jg and (3 are the parameters

¢ X; is the known constant value of the predictor variable for the

ith observation

& £; 1Is the error for the ith observation

Situation

The Regression parameters
are unknown

B, is the y-intercept
mw_m the mv_\o_om ’

Assumptions

The expectation of Y;is
the mean of the
regression equation

The errors are
uncorrelated and have a
constant variance

E[Y]] = Bo + f1.X;

m—m\_ =0

o?{e;} = 0?

Objectives

To find the ‘good’ values that
can serve as estimates for G,
8, and ¢,



. (Multiple Regression) .

Linear Models

Yi = Po+ 51X+ BoXio+ -+ 4 Bp_1Xip—1 + €i

¢ Y; is the value of the response variable for the ith record

(i=1,...,n)

¢ Bo, f1, ..., Bp—1 are parameters

¢ Xi1, Xio, .

& £; Is the error for the /ith observation

Situation

The Regression parameters
are unknown

B, is the y-intercept
m_om_d %%\m_o_omm ’

Assumptions
-The expectation of Y,
is the mean of the
regression equation

E[Yi] = Bo + BiXin + BoXio + -+ + Bp1Xip-1

m—m\_ =0

-The errors are uncorrelated QMAmL — g2

and have a constant
variance

.., Xi p—1 are known predictor variables

Objectives

To find the ‘good’ values that
can serve as estimates for G,
B, and ¢,



Linear Models

(Matrix Notation)
Y=X38+¢
J\H- 1 X1 X - XITH- | mo ] -mH-
Y I Xon Xoo --- XN;TH o)1 €2
|J\:| |H X:H X:M e szblul |@bIH| | €n
Situation Assumptions Objectives
The R . -The expectation of Y, m~<_ = X3
c m_A© ression PArameters | ne mean of the To find ‘good’ values that can
are unknown regression equation Ele] =0 serve as estimates for 8 and &
B _m. the vector of Umﬁm_\jmﬁm_\

-The errors are uncorrelated
and have a constant
variance

estimates o?{e} = o,



How do we find ‘good’
estimatese



Fitting Linear Models

Least Squares Estimation

* Minimizes the vertical distance [
of the observed responses to 101 ® eData </
the regression line obl——— i fon
ml .......................................
> A SR RNy & SRR
mw .................... .................
S5F Y@ e
L T N



Fitting Linear Models |,

Notation convention...

* Bo. By B, ... etc. are unknown
« Estimators from a sample are: b, b,, b,,... etfc.

« &.and o? are unknown
« Estimators from a sample are e, and s?



Fitting Linear Models

Least Squares Estimation

.7\_3_3_Nmm§m<m_&8_Q_masmm | .| .N
of the observed responses to Q= MU [Yi = (Bo + 51.X)]

the regression line /

« To find the solution... |NM

« Take the derivative w.rt. the mmo
regression parameters

— Bo — 1.Xi)

LMX Yi = o — 1 X)



Fitting Linear Models

Least Squares Estimation

* Minimizes the vertical distance
of the observed responses to
the regression line

 To find the solution...

e Take the derivative w.rt. the
regression parameters

* Set equal to zero and solve for b,
and b,




Fitting Linear Models

Least Squares Estimation

 The residuals are used to create 2 SSE
an estimate of the variance s¢ n—p

oot 32 - S
=1

=1

E[MSE] = o7



Fitting Linear Models

Least Squares Estimation - Properties

e Guarantees estimators are
unbiased with minimal variance Elbo] = (o and E[b1] = /31

* (does not require assumption of
normality)

E[MSE] = o



What if we want to make inferences
about the significance of the estimatese



Fitting Linear Models

Normal Regression (Maximum Likelihood)

1.0

e The data are assumed to be a
random selection from a
normal population

e The error terms are now
assumed to be normally
distributed

e (i.e. that & ~ N(O, 09))

0.8

L L B B B B A B I B

H=0, 0?=0.2, == _
H=0, 0?=1.0, === 1

=0, 0%=50, == |
H=-2, 0%2=0.5, == -




Fitting Linear Models

Normal Regression (Maximum Likelihood)

e The task of MLE estimation is to Distribution of Yi

find estimators for B and o that
maximize the normal density
function for all y;

0.12

Density
0.98

0.04

0.00




Fitting Linear Models

Normal Regression (Maximum Likelihood)

* The MLE estimators for [ are the
same as the least squares
estimators

» Note the similarity to Least Squares
through inclusion of the negative
squared distance in the exponential

« The MLE estimator for o° is almost
the same as the least
squares standard error estimator

* For large samples sizes they are
essentially equivalent

Distribution of Yi




Fitting Linear Models

Normal Regression (Maximum Likelihood)

Assumptions - Errors

e Errors are uncorrelated and Els;] =0
have a constant variance 02{e;} = o2
* Errors are independent and
distributed normally with a &;~N(0,0?)

mean of “0” and a variance of
2
)



Fitting Linear Models

Normal Regression (Maximum Likelihood)

Assumptions - Parameters 1 X2

.?mo__m:_ggo:mmmcﬁjgoio_\ @022@9%|+ M%Ax.lwom
the data carries over to the =
sampling distribution of the . bo—Fo
parameter estimates s{bo}

* "The sampling distribution of b, refers to 2
the different values of b, that would be by~ N (5 o
obtained with repeated sampling when the v ST (X — X)2
levels of the predictor variable X are held
constant from sample to sample.” ~ by — [

Kutner et al., 2004 > (b} ~ th—2




Fitting Linear Models

Normal Regression (Maximum Likelihood)

Assumptions - Parameters Ho: 1 =0vs. H,:0 #0

e The distribution assumptions -t = m%@J
for the parameters enable e < Hﬁ PR .
: : > t*| < t(1 —«/2;n—2) = conclude Hy
hypothesis testing about C I 1] > 11— /20— 2) — condlude H,
parameter significance

MSE
b = > (X = X)?

s?{by} = MSE m+ X
o n (X = X)?




Fitting Linear Models

Beef Example
Description of Data Lots of data and measurements
* 30 bull calves from 3 breeds
were grazed on winter wheat or e STavghtercr”  "Birthbate"
ﬁV\mw [4] “wAm:o:mmﬂomﬂm: Hcm<m>mm4m:o:ﬂm1: “mqo:u: §
m%ww :Mmﬁwmmm.sﬁ: :wﬂmmm43n.= :ywww¢%mo.mn01m:
* They were slaughtered around [ NREAL L Kl )
18 mos and detailed carcass o1 et e
quality measurements were [25] ronegas X6_3_ratio
taken

Heins, et al. 2017. Organic Beef Data from Integration of Crops and Livestock Project.



Beef Example

Objective:

Develop a model to predict
marbling score

Fitting Linear Models |,

Frequency
4 6 8 10

2

0

T T T T T T T 1

1.2 14 1.6 1.8 2.0 2.2 24 2.6
Marbling Score (9

0)

Heins, et al. 2017. Organic Beef Data from Integration of Crops and Livestock Project.



Fitting Linear Models
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Heins, et al. 2017. Organic Beef Data from Integration of Crops and Livestock Project.



Fitting Linear Models

Beef Example

> summary(fitl)

call:

Tm(formula Marbling.Score ~ DaysAtSlaughter + MFA + omega3,

data = beef)

Residuals:
Min 1Q Median 3Q Max
-0.47407 -0.23739 0.03711 0.23037 0.43549

fitl = Tm(Marbling.Score ~ DaysAtSlaughter + MFA + omega3, data = beef)

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) -1.347470 1.735404 -0.776 0.4448
DaysAtSlaughter 0.001775 0.003103 0.572 0.5724
MFA 0.036861 0.015931 2.314 0.0292 =
omegas 1.250162 0.767690 1.628 0.1160

Model Specification Crgq
0.05 0.1 1

Residual standard error: 0.2968 on 25 degrees of freedom
Multiple R-squared: 0.285, Adjusted R-squared: 0.1992
F-statistic: 3.321 on 3 and 25 DF, p-value: 0.03597

Heins, et al. 2017. Organic Beef Data from Integration of Crops and Livestock Project



What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models

N

Model Fitting

Find the ‘best’
numerical relationship
between the
dependent and
independent variables.

e For simple and
multiple linear models,
the important choice
in model fitting is
between Least
Squares and MLE



What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models

Find the 'best’
numerical relationship
between the
dependent and
independent variables.

Model Selection

How do you know
which dependent
variables should remain
in the model?




. How was your data collected? ,

Requires
Reduce intelligent

IA6[SeIEle[ERe s discrimination on

VEIElolENelele] Y the part of the

Even small datasets  MRSUIASHelItEE] modeler.

can contain variables and
nonsensical variables Interactions

BISRENolOIEiEIN  Often the most
VEIEISIESEIORS  difficult part of
interactions modeling.

Observational
Study

Controlled
experiment

Fit all possible

. Specificall :
ZCQ_H_Umﬂ y oMm: combinations Qmm_m:mg to W\m& Exploration of
small enough to available data to find g
the outcomes Manual or Usually won't find

prevent increasing
Type Il errors.

highly influential .
response to a set 9ny . Automated a single ‘best’
variables

of inputs. selection model.




Model Selection

Criteria for selection

* R? or Adjusted R?

« Adding more predictor variables
will always increase R?

« Adjusted R? corrects for the
number of parameters w.rt the
number of observations

2 SSR . SSE
-~ SSTO SSTO
SSE

Adjusted R? : R? = ==~

a SSTO

n—1

SSE=> (Yi—VY)?  SSR=
i=1

n

> (

=1

05



Model Selection

Criteria for selection

N . N 3 H —Ic\mlkhvw
¢ E + >O:Cm.ﬁ®Q m MH— —\..O\N_h\Q.NvH /\N|m 207

« AIC or BIC over

Akaike Information Criterion
Bayesian Information Criterion

Estimates the ‘amount of BIC = In(n)p — 2 In(L)
information lost’ by summarizin

the data with a model instead o

using the exact data

Lower loss of information =
Better

BIC has a stronger penalty for
adding more parameters

AIC = 2p — 2 In(L)



Criteria for selection

* R + Adjusted R?
 AIC or BIC

MSPE — An assessment of
prediction error.

e This metric can also be
decomposed to assess mean bias
(ECT) and slope bias (ER) as
described by Bibby and
Toutenberg (1977).

Model Selection

—1(0; — mvm

MSPE =

,  Xieqy(P,—P;)? ﬁJAO. ~0,)?

Sy, = S
p n a

- (B (B0 ) )
([ -ri)

MSPE

2

ECT = (P — 0)° ER =
"~ MSPE B

O = Observed; P = Predicted



Model Selection

Criteria for selection

* R? + Adjusted R< C, = SSEp n+ 2p
M.N
* AIC or BIC
« MSPE n
* Mallow’s CP- another metric SSE, = MO\N — y.D;)*
with a strong correction for the i=1

number of parameters

n
52 = (i —yfully)’
=1



Model Selection

Criteria for selection

. Tm(formula = Marbling.Score ~ DaysAtSlaughter + MFA + omega3,
* R + Adjusted R Gata = beet)
Residuals:
° >_m w_m Min 1Q Median 3Q Max
O—\. -0.47407 -0.23739 0.03711 0.23037 0.43549
Coefficients:
® —/\_m_um Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.347470 .735404 -0.776 0.4448
DaysAtSlaughter 0.001775 .003103 0.572 0.5724
/ MFA 0.036861 .015931 2.314 0.0292 *
° 7\_®__O/>\m m_U omega3 1.250162 0.767690 1.628 0.1160
. . . Signif. codes: wEE . *%7 0.01 ‘*’ 0.05 ‘.
o LRT (likelihood ratio tests) 5
Multiple R-squared: Adjusted R-squared:
N F-statistic: 3.321 on 3 F, p-value: 0.03597
* For testing nested models

° NMSAMM \mv > anova(fit2, fitl)

Analysis of variance Table

* _HO__O<<m an _ng_m.fx__oc.ﬁ_o_g Model 1: Marbling.Score ~ DaysAtSlaughter + MFA

Model 2: Marbling.Score ~ DaysAtSlaughter + MFA + omega3
Res .Df RSS Df Sum of Sq F Pr(>F)

1 26 2.4358

2 25 2.2022 1 0.23361 2.6519 0.116



. Model Selection

Forward Stepwise Regression

* An algorithm to select models by starting with the

smallest model and progressively adding independent ° > QBéUmm_A .Qn this method is that is .
variables until additional variables do not improve the identifies a single ‘best’ model but there is
model often not a truly ‘best’ model because
1. Add independent variable with the smallest P-value, or different models will Umjno_\_\j Q:%@dji%
model with lowest AIC/BIC b d diff f criteri d di fi
2. Add another independent variable with the next ased on airerent criteria an lagnostics

smallest P-value, or lowest AIC/BIC

3. Test previously added variables to see if they are still
needed based on a removal alpha criteria

4. Repeat 2-3 until adding a new variable no longer
improves the model



Model Selection

Forward Stepwise Regression: Beef Example

. Selection with p-value
TC: 7>mXumf > ols_step_forward_p(fullfit)
Forward Selection Method

Marbling Score ~ AgeatSlaughter + MFA + Omega3 + Candidate Terms:
ForageType + Breed + Carcass.Wt + Dressing% + BCS +
Backfat + RibeyeArea + TFA

DaysAtSTlaughter
MFA

omega3
Forage

Breed
Carcass.Wt
Dressing.
BCS

. Backfat

10. Ribeye.Area
11. TFA

R package — olsrr

ilc
28
SE
4.
o
6.
7.
8.
9

» (Can select on p-value or AIC

variables Entered:

Dressing.

MFA

omega3
DaysAtSlaughter
TFA

Backfat




Model Selection

Forward Stepwise Regression: Beef Example

Selection with p-value

> ols_step_forward_p(fullfit)
Forward Selection Method

Candidate Terms:

DaysAtSlaughter
MFA

omega3
Forage

Breed
Carcass.Wwt
Dressing.
BCS

. Backfat

10. Ribeye.Area
11. TFA

1.
28
3
4.
e
6.
7
8.
9

variables Entered:

Dressing.

MFA

omega3
DaysAtSlaughter
TFA

Backfat




Model Selection

Forward Stepwise Regression: Beef Example
Selection with p-value Selection with AIC

Selection Summary

variable
Entered

0.26813 0.24103
M.Mwwm w.wwww 10.8420 0.36808 0.31947
0.4907 0.4058 0.5622 9.7033 0.2557 M.MWMMN M.Mwmwm
0.5190 0.4144 1.4765 10.0475 0.2538 . .
0.5454 0.4214 2.4615 10.4089 0.2523




Model Selection

Backward Stepwise Regression

e Similar to the forward selection

1. Starts with full model with all of
the variables in the model

2. Removes a variable based on
largest p-value or AIC

3. Previously removed variables
are tested to see if they should
be added back in.

4. Repeat steps 2-3



Model Selection

Backward Stepwise Regression

) > ols_step_backward_p(fullfit)
Full Model: Backward Elimination Method

Candidate Terms:

Marbling Score ~ AgeAtSlaughter + MFA + Omega3 +
ForageType + Breed + Carcass.Wt + Dressing% + BCS +
Backfat + RibeyeArea + TFA

1 . DaysAtSTlaughter
2 . MFA

3 . omega3

4 . Forage

5 . Breed

6 . Carcass.Wt
7

8

9

1

1

. Dressing.
. BCS
R package — olsrr . Backfat
0 . Ribeye.Area
1

« (Can select on p-value or AIC - TFA

variables Removed:

Breed
Carcass.Wt
omega3
Forage
Ribeye.Area
BCS




Model Selection

Backward Stepwise Regression

Selection with AIC

> ols_step_backward_aic(fullfit)
Backward Elimination Method

Selection with p-value

> ols_step_backward_p(fullfit)
Backward Elimination Method

Candidate Terms: Candidate Terms:
DaysAtSTlaughter
MFA
omega3
Forage
Breed
Carcass.Wwt
Dressing.

BCS

Backfat
0 . Ribeye.Area
1 . TFA

DaysAtSlaughter
MFA
omega3
Forage
Breed
Carcass.Wt
Dressing.
BCS
Backfat
0 . Ribeye.Area
. TFA

1 1
w 2
: 3
: 4
: 5
5 6
5 7
9 8
1 9
1 1

[
[

variables Removed: variables Removed:

Breed
Carcass.Wt
omega3
Forage
Ribeye.Area
BCS

Breed
Carcass.Wt
omega3
Forage
Ribeye.Area
BCS




. Model Selection

Beef Example: Forward and Backward

Forward Selection Backward Selection
Marbling Percent ~ Marbling Percent ~
Age at Slaughter + Age at Slaughter +
MFA + MFA +
Dressing percent + Dressing percent +
Backfat + Backfat +
TFA + TFA

Omega 3




Model Selection

Beef Example: Forward and Backward

Forward Selection Backward Selection

call:

call: ) ) Tm(formula = Marbling.Score ~ Dressing. + MFA + DaysAtSlau
Tm(formula = Marbling.Score ~ Dressing. + MFA + omega3 + DaysAtSlaughter + TFA + Backfat, data = beef)
, =

TFA + Backfat, data = beef)

Residuals: : .
Min 1Q Median 3Q Max 1Q Median 3Q Max
-0.65154 -0.17202 0.09389 0.12840 0.39472 c -0.18319 0.05394 0.15671 0.40892

Coefficients:

Estimate std. Error t value Pr(>|t|) Estimate std. Error t value Pr(>|t|)
(Intercept) T5-024269  Z.503a14 3.2%9 0.003%2 (Intercept) -8.204793  2.496905 -3.286 0.00324
GEs. G.GiCT San0 GLriees ing. 8.732572 3.663656 2.384 0.02579
571822  0.791551 0.722 0.47765 0.036189 0.016508 2.192 0.03875
DaysAtSlaughter 0.005753 .003141 .832 0.08057 . 0.006363  0.002993  2.126 0.04447
TFA .106287 0.081098 1.311 0.20351 0.112952 0.079729 1.417 0.16997

Backfat .172663 .689820 .131 .27029 5.670525 3.020264 1.877 0.07319

Signif. codes: O ’ 0.001 '’ 0.01 ‘% .05 ‘.’ 0.1 ¢’ 1 Signif. codes: 0 £%7 0.01 ‘*’ 0.05 ‘.’ 0.1 ° ' 1

Residual standard error: 0.2523 on 22 degrees of freedom -
Multiple R-squared: O0.5454 >au:mdmaox|mncm1ma“ 0.4214 Residual standard error: 0.2496 on 23 degrees of freedom

F-statistic: 4.399 on 6 and 22 DF, p-value: 0.004565 ZCAﬂiudm R-squared: 0.5346, Adjusted R-squared: 0.4334
F-statistic: 5.284 on 5 and 23 DF, p-value: 0.002243

Adding Omega3 as a predictor increased the SE of the other predictors and is not significant
at a P-value < 0.1, but it was included in both forward selection models. Why?



Independent Variable Correlations

> cor(model.matrix(forward

Dressing.
Dressing. 1.0000000
MFA 0.2738693

omega3 0.1035380
DaysAtSlaughter -0.3210500

-0.3706610
5596820

TFA
Backfat 0.

i),

.2738693
. 0000000
.1779144
.0170445
.5788626
.2743572

Model Selection

-11)
MFA omega3
.10353798 -0.
.17791438 -0.
.00000000
.01456279
.07532196

.48040541

DaysAtSTlaughter

32104997
01704450

.01456279
.00000000
.19322647
.45741140

TFA

. 37066099
. 57886256
.07532196
.19322647
.00000000
ek il

Backfat

. 5596820
.2743572
.4804054
.4574114
.3559961
. 0000000




Model Selection

Independent Variable Correlations

* When there is a high degree of
correlation between
independent variables, the
coefficient estimates will have
larger SEs and the estimates will
vary more between samples

« Parameters may not be
statistically significant even if
there is a statistical relationship

Extreme case is a perfect linear
relationship:

Xw — \_m + WR_. VAN

The degree of correlation among
independent variables in a model
is known as Multicollinearity



Model Selection

Multicollinearity

° : : : VIF(by) = (1 - R})™!
|_|j® <m_‘._m30m _D.ﬁ_m.ﬁ_OD _Hmﬂ.ﬁo_‘. 15 where R? is the coefficient of multiple determination when Xj is

Cm@Q .wO aSSess .ﬁjm Q®@ ree O.ﬂ regressed on the p — 2 other predictor variables
multicollinearity

e General recommendations are to
have a VIF less than 10

S <.Tmm,mc._._+u.mdv > <4..m9no_,zmqa;n4.3 - - KF
GVIF Df O<H_H>AH\AN.....O+"VV Dressing. MFA omega3 DaysAtSlaughter TFA Backfat

ey 505434 1.872280 1.610185 1.585762 1.520016 1.419040 1.693856 2.544841

MFA .209018 1.486277

omegas .503739 .025155

Forage .104543 .450704

Breed .270017 .908613

Carcass.wt .672553 .161609

.011468 .735358

.810502 .676455

.438618 .106803

.503715 .871821

.205457 .281547

.120376 .473939

omegab .222727 .910738

X6_3_ratio .124621 .752643

=
(@]

Dressing.
BCS

Backfat
Ribeye.Area
TFA

Protein

OUVTWANWPALWN
RFRRRRRRRRNRRRR
RONNRNRRNRR

'_l




Model Selection

Model Selection Caveats

 Often there is not one "best” * [t there is a set of qualitative
model for all criteria and so the predictors (i.e. a categorical
ultimate selection is a choice variable with multiple values) it
made by the modeler by s best to include all values,
weighing the difference criteria even if only one or two is

significant. Similarly, if there are
interaction or second or terms,
the first order term needs to be
maintained in the model.



What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models

Model Fitting

Find the ‘best’
numerical relationship
between the
dependent and

independent variables.

Model Selection

How do you know
which dependent
variables should remain
in the model?

All model selection
methods still require
intelligent

direction, intervention,
and evaluation



What's the
Objective?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Linear Models

Find the 'best’
numerical relationship
between the
dependent and
independent variables.

Model Selection

How do you know
which dependent
variables should remain
in the model?

Evaluation +
Interpretation

How well does the

model perform and

what can you learn
from it?




Model Inference

Prediction of sample dato

Yy = XIb = 1by + Xp1by + - + Xy p_1bp1

> pred = predict(fit3)
> plot(pred ~ beef$Marbling.Score, xlab = "Observed Marb. Score",

mMA_ﬁ¢\>v = immAXM.Ax._.xVIHx:v . ‘ + ylab = "Pred. Marb. Score", cex.axis = 1.5, cex.lab = 2)
Confidence Interval: Y}, & t(1—a/2,n—p)s{ ¢>\$

Tm(Marbling.Score ~ DaysAtsS] hter + MFA + Backfat + TFA, data=bee AHV
(fit3) =
summary (fit3 o
call: O <t
Tm(formula = Marbling.Score ~ DaysAtSlaughter + MFA + Backfat + A\U n/h I w g o
TFA, data = beef)
No! g °
1Q Median 3Q Max — 0 | o © 8
-0.18183 0.01278 0.24318 0.41460 U 8 ©
o o 5 o a8 3
Coefficients: M -l o
Estimate Std. Error t value Pr(>|t]) (Ce) o
(Intercept) -3.985733 .925195 -2.070 0.04935 * . v — o
DaysAtslaughter 0.005717 .003259 1.754 0.09213 w ~ T T T T T T T
MFA 0.038341 .018019 2.128 0.04383
Backfat 8.711830 .992610 2.911 0.00766 | - ‘_A. \—.m ‘_m N.O NN N.A. Nm
LG .086081 0.966 0.34367 Dl
ionit. codes: 0 axs 0,01 % 0.05 . 0.1 " 1 Observed Marb. Score

Residual standard error: 0.2729 on 24 degrees of freedom
Multiple R-squared: 0.4196, Adjusted R-squared: 0.3229
F-statistic: 4.338 on 4 and 24 DF, p-value: 0.008812




Model Evaluation

Objectives Which Data to Use
* Check Assumptions! » Sample data
» Normality

e Constant Variance
* Uncorrelated

o Fit » Sample data
* How well does the model describe the
data?
e |s the model biased?
 New Data

* Prediction Accuracy

» How well does the model predict new
data

Data splitting
Bootstrapping



Metrics

Plots

* Residual Plots- Against predictor
variables
 Against predicted values

* Against dependent and other, non-
_Jm_wam variables (e.g. time, study,
etc.

* Boxplots and normality plots of
residuals

« QQ plots
* Plots of observed vs. predicted

 Regression of observed vs.
predicted

Model Evaluation

Formal Tests and Metrics

Formal Tests
* Shapiro-Wilkes test (normality)

» Brown-Forsythe (Consistency in
Variance)

 Breusch-Pagan test (Consistency
In Variance)

* MSPE/RMSPE
« CCC
. R?



Model Evaluation

Beef Example

° >mmC _\jbﬁ_ﬁujm _Nmm_Qcm_ U_O.ﬁm wwﬂhmmmrzuw%ﬂumﬂ mwmc = "Residuals”, xlab = "MFA", cex.axis = 2, cex.lab = 2)

* Look for patterns and distribution
between positive and negative

values ) = 5 -

- (N © o 2 o
» Should be evenly and randomly © - 0 °
Ly o O © o

distributed I e Soleo
- — O o
)] o o © o
Q 4 °o N
R o © o

I _ _ _ _ _ _ _




Model Evaluation

Beef Example

« Assumptions: Residual plots

e Look for patterns and distribution
between positive and negative
values

* Should be evenly and randomly
distributed

plot(res ~ beef$cCarcass.wt, ylab = "Residuals",
2, cex.lab = 2)

kex.axis =

xlab = "carc

abline ¢(h = 0, 1ty = 2)

Residuals
-04 0.2

450 500 550 600
Carcass Weight



Model Evaluation

Beef Example

» Assumptions: Quantile plots

 Ordered residuals plotted against
their quantile value if they
followed a normal distribution
exactly

e Deviations from the line indicate
departures from normality

Sample Quantiles

04

0.0

-04

qgplot(qgnorm(res))

ggqline(res)

Normal Q-Q Plot

Theoretical Quantiles




Model Evaluation

Beef Example

 Assumptions: Shapiro-Wilkes > #pee resta for normaliy

> shapiro.test(res)

shapiro-wilk normality test

data: res
w = 0.96138, p-value = 0.3553

Hy: Residuals ~ N(O, o)

*If the null is rejected, it is not
certain that the residuals are not
normally distributed. Especially with
large sample sizes, it is i
recommended to assess the degree
of departure, e.g. with a QQ plot

Boxplot of Residuals

04

00

-04




Model Evaluation

redReg = Tm (beef$Marbling.Score ~ pred)
a=0,b=1, lwd = 2)
obsPredrReg, 1ty = 3, col = "darkorange3", lwd= 3)
> summary (ObsPredReg)

wA w A w * — XQ — _ — _ A > plot(beef$Marbling.score ~ pred, xlab = "Predicted", ylab = "observed", cex.axis = 2,
cex.lab = 2)

call:

() —/\_OQm_ _H_.ﬁ _U_O.ﬁm QSQ EmQﬁmmm_Oj Im(formula = beef$Marbling.Score ~ pred)

Residuals:

of Observed Vs. Predicted e ekt e e

coefficients:

* Points should fall along the line of Gavereepes 2-650003 “SEATEL 5100 1 oobod

1.000e+00 2.263e-01 4.418 0.000145 **

Cjw.ﬁV\ ignif. codes: 0 ‘¥**’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 *

standard error: 0.2573 on 27 degrees of freedom

* Regression of Obs ~ Pred should iRt i el L
resultin B, =0, and [, =1
 Higher R? = better fit

Oo

16 1.8 20 22 24
Predicted

Observed




. Model Evaluation

Beef Example

* Prediction Accuracy:

> MSPE = sum((beef$Marbling.Score - pred)A2)/length(pred)
[ > MSPE
7\_m_Um [1] 0.06163817

* Smaller values are better

» (Can take the square root to get the
prediction error in units of observed

value
> epi.ccc(beef$Marbling.score, pred)
$ rho.c
o CCC est Tower upper

observed and predicted values agree

e $s.shift
— both precision and accuracy 110

[1] 0.6477967

e -T<p<]

. . $1.shift
Values closer to 1 indicate a stronger [1] -2.539602e-15
concordance

$C.b
[1] 0.9126207




Model Inference

Prediction of new data

«V} — x.\u._u — ”_.Uo |T X\;UH |T e |T X}:OIHU.OIH K2

s?{pred} = MSE(1 + X} (XTX)"1X,)
Prediction Interval: ¢>\>§m§ +t(1 —«/2,n— p)s{pred}

Region Caovered
by X; and X,
Jointly ,

* Only use values that are within the
multivariate region of the of the
dependent variable samples

r~—Range of X;—
I I

! 1

Kutner et al., 2014



Model Inference

Prediction of new data

Yy = XIb = 1by + Xp1by + - + Xy p_1bp1

s?{pred} = MSE(1 + X[ (XTX)"1X})

Prediction Interval: &;85 +t(1 —«/2,n— p)s{pred}

summary (beef[ , c("

newData = data.frame(DaysAtSlaughter =
Backfat = rep(0.1, 41), TFA

new = predict(fit3, newdata = newData, se.fit

plot(new$fit ~ newbData$paysAtSlaughter, xlab = ' ,
e, ylim = ¢(1.7, 2.2), cex.axis = 2, cex.lab = 2)

ylab = "Marbling ¢

ci.l new$fit - newSse.fit
ci.u = new$fit + newSse.fit
Tines(ci.1 ~ newData$paysAtSlaughter, 1ty
Tines(ci.u ~ newData$paysAtSlaughter, 1ty

ackfat", "TFA")])

MFA = rep(48.6, 41),

1.2, 41) )

TRUE)

at Slaughter

2.1

-
et

..............

1.9

.t
\\\\\

Marbling Score

1.7

480 490 500 510 520
Age at Slaughter (d)




Model Inference

Parameter Estimates

« How should the parameter
mean and Cl be interpreted?

» Depends on...
* Study design
* Modeling objectives

« Remember that the parameter
estimates are correlated

Test statistic :

o?{b} = s2(XTX)"!
» $2{b} = MSE(XTX)™

s’{b} =

mNﬁ@ov
MAUH. @ov

by

= —

s{by}

MAWQ. UHW
s?{b;}

|MAUUIH. Uouv MAUEIH. UHW

MAGO. UnIHWI
MA@H. DOIHW

2{b, 1}




Model Inference

Parameter Estimates: Beef Example

call:
Tm(formula = Marbling.Score ~ DaysAtSlaughter + MFA + Backfat +
TFA, data = beef)

call:
Im(formula = Marbling.Score ~ DaysAtSlaughter + MFA, data = beef)

. Residuals:
Res als: Min 1Q Median 3Q Max

Min 1@ Median 3Q Max -0.5770 -0.2526 0.0351 0.1867 0.4672
-0.47104 -0.18183 0.01278 0.24318 0.41460

o Ccoefficients:
coefficients: Estimate Std. Error t value Pr(>|t]|)
Estimate Sstd. Error t value Pr(>|t]|) (Intercept) -0.932668 1.770301 -0.527 0.6028
(Intercept) -3.985733  1.925195 -2.070 0.04935 * DaysAts1 ter 0.001865 0.003199 0.583 0.5649

ter 0.005717 0.003259 1.754 0.09213 MFA 0.041485 0.016167 2.566 0.0164 *
0.038341 0.018019 2.128 0.04383
8.711830 2.992610 2.911 0.00766 ** Signif. codes: '’ 0.001 . *’ 0.05 ‘.’ 0.1 “ "’ 1
0.083155 0.086081 0.966 0.34367
Residual standard error: 0.3061 on 26 degrees of freedom
codes: (Q ‘%% . e g .05 ‘.7 0.1 “ 1 Multiple R-squared: 0.2091, Adjusted R-squared: 0.1483
F-statistic: 3.438 on 2 and 26 DF, p-value: 0.04735
Residual standard error: 0.2729 on 24 degrees of freedom
Multiple R-squared: 0.4196, Adjusted R-squared: 0.3229
F-statistic: 4.338 on 4 and 24 DF, p-value: 0.008812

Note that including additional parameters, can change the parameter estimates and their SE



What it groups of
your data are
related to each
othere

1000 1500

500

80

90

100




Mixed Models

A

What is a
random effect?




/x\ Random Effects

« Random effects are used to represent correlations among
observations that belong to the same group when the group
characteristic is a random selection from the larger population.

« While a fixed effect describes an average response to a given factor
or independent variable level, a random effect is assumed to have
an average response of zero (it is random) and therefore influences
the covariance structure rather than the mean or expected value of
the response.



: Mixed Models

Y=XB8+2Zu+e¢

Situation

The Regression parameters
are unknown

u is the vector of parameter
estimates

Y is the n x 1 vector of observations
3 is the p x 1 vector of regression coefficients or fixed effects

X is the n x p design matrix for the fixed effects
Z is the n x m design matrix for the random effects
u is the m x 1 vector of random effects

e Is the n x 1 vector of errors

Assumptions
-The expectation of Y, m~<_ = Xp
and errors are the same as a
simple linear model m—m_ =0
2 - Q.m_: n
-Have additional o'{e} .
assumptions of the random

Objectives

To find ‘good’ values that can
serve as estimates for 8, G, and

R

effects u~ N(0,G) and € ~ N(0,R)



Random Intercepts vs. Slopes

A random slope influences the response to the fixed effects AND this
response can be separated from the effect of the random grouping

on the overall mean response.

yij is the body weight on the jth time for the ith rat
o and 1 are the fixed intercept and slopes commom to all rats

by; is the random effect describing the deviation of rat / from
the common intercept

Yij = (Bo + boi) + (51 + bii)xj +

by; is the random effect describing the deviation of rat / from
the common slope

cjj is the error
i=1...., 16 and j =11

0 o2 oF
co A 2 .~ int int,slope
eij ~ N(0,0%) and by ~ N ﬁﬁov . Aqsﬁm\%m qw\%m vg



What is a
random effect?

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Mixed Models

Same data exploration in simple
inear regression applies in

mixed model regression except
also want to separate by groups



weight

Rat Bodyweight Example

o —
600 - 600 - T e
—— = -
_ -—" "
. s Nw\ﬂ”lﬁﬂnﬂﬂ.ﬁﬁn =
[ | ”.1||4.9|\ - S e al "
B} S o S
500 _ 500 I — L
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.mq |||0” e —r—
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o R
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What is a
random effect?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Mixed Models

Find the ‘best’
numerical relationship
between the
dependent and
independent variables.




MLE are the parameters
that maximize the likelihood __
function of the data.

Random effects increase the
number of parameters that
need to be estimated can
make the optimization
difficult.

MLE variance estimates are
biased.

Mixed Model Fitting

Maximum Restricted
Likelihood Maximum
Likelihood

Removes the fixed effects
then estimates the variance
components

The estimated variance
components act as constants
in the second estimation
procedure to find the

MLE estimates of the fixed
effects.

REML estimates are less
biased than MLE
estimators, especially for
balanced data.



Mixed Model Fitting .

Know your model fitfing functions!

REML is often the default so if
you need to fit in ML for model
selection purposes, be sure to
use the correct function inputs



Mixed Model Fitting

Note that the mean estimates are the same but their SE and the Random effect variances are different

REML

REML.fit = Tmer(weight ~ Time + Diet + (l|Rat), data = Bodyweight)
summary (REML. fit)

ML.fit = Tmer(weight ~ Time + Diet + (l|Rat), data = Bodyweight, REML = FALSE)
summary (ML. fit)

> summary(ML.f1t)
Linear mixed model fit by maximum likelihood ['TmerMod']
Formula: weight ~ Time + Diet + (1 | Rat)

Data: Bodyweight

> REML.fit = Tmer(weight ~ Time + Diet + (1|Rat), data = Bodywei
> summary(REML. f1it)

Linear mixed model fit by REML ['ImerMod']

Formula: weight ~ Time + Diet + (1 | Rat)

AIC BIC logLik deviance df.resid Data: Bodyweight

1333.2 1352.2 -660.6 1321.2 170 . .
REML criterion at convergence: 1304.3
scaled residuals:

Min 1Q Median 3Q Max
-3.5386 -0.5581 -0.0494 0.5693 3.0990

scaled resi 1s:
Min 1Q Median 3Q Max
-3.5236 -0.5557 -0.0467 0.5667 3.0932

Random effects:
Groups Name Variance Std.Dev.
Rat (Intercept) 1085.92 32.953
Residual 66.44 8.151
Number of obs: 176, groups: Rat, 16

Random effects:

Groups Name variance Std.Dev.

Rat (Intercept) 1337.88 36.577

Residual 66.85 8.176
176, groups: Rat, 16

Fixed effects:

Estimatefstd. Error value
(Intercept) 244.06890 11.73107 20.80
Time 0.58568 0.03158 18.54
Diet2 220.98864 20.23577 10.92
Diet3 262.07955 20.23577 12.95

Estimate
(Intercept) 244.0689¢C
i 0.5856

Correlation of Fixed E
(Intr) Time Diet2
-0.082
-0.575 0.000
-0.575 0.000 0.333

Correlation of Fixed Effects:
(Intr) Time Diet2

Time -0.090

Diet2 -0.575 0.000

Diet3 -0.575 0.000 0.333




What is a
random effect?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Mixed Models

Find the 'best’
numerical relationship
between the
dependent and
independent variables.

Model Selection

Have to select both
fixed and random
effects




Fixed effect selection

e Cannot use LRT with REML
fitted models because the
likelihoods are altered to

ML.fit = Tmer(weight ~ Time + Diet + (1|Rat), data = Bodyweight, REML = FALSE)

—\m—\jo<m .ﬁjm .ﬁ_xmq m.ﬂ.ﬂmm.ﬁm mo ML.fit.red = Imer(weight ~ Time + (1|Rat), data = Bodyweight, REML = FALSE)

anova(ML.fit, ML.fit.red)

aren’t comparable.
e Use ML fit models instead to

ML.fit.red: weight ~ Time + (1 | Rat)

select fixed effects in a mixed Sl SRS shes €

logLik deviance chisq chi Df Pr(>chisq)
ML.fit.red 4 1372.0 1384.7 -682.00 1364.0

goqm_ ML.fit 6 1333.2 1352.2 -660.58 1321.2 42.841 2 4.979e-10 *

signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ' 1




What is a
random effect?

Before beginning, it's
important to know how
the model results will
be used.

P

Data
Exploration

What data do you have

to work with? What are

their ranges? Patterns?
Visual relationships?

Mixed Models

Find the 'best’
numerical relationship
between the
dependent and
independent variables.

Model Selection

How do you know
which dependent
variables should remain
in the model?

Evaluation +
Interpretation

The nature of the
random effects and
your objectives will
determine how you
can interpret them




Reporting Random effects

> random.effect

e Random effects are often not SRar
reproducible 3 3518109
- 2.816750

» Not valuable for inference on 1 -2.613129
future populations S

* Rat #2 is on average 25.96 g 11 -20.751212

. 9 -43,.687900

below Rat #1 — but that estimate -31. 832654
can only be used for inference on -32.737644
14.321305

Rat #72 10.429892

7.986447



Reporting Random effects

* _Hmmjm_o_\j mmmﬁ.ﬁm m_xm O.—N.ﬁmj jo.ﬁ r;mmrv-adxwmyomm“m; by REML ['TmerMod']
ﬁmWﬂu_\ﬁuﬁ¥rgmu_wu_mw mOwMMMMM MMMWUM¢M:MJam + Diet + (1 | Rat)
o ZO._“ <®_C®U_m ano_\ __\jnm_\mjﬁm on ﬁnc.ﬁc_xm REML criterion at convergence: 1304.3
_UOUC_mﬁ_ij scaled residuals:
. Min 1@ Median 3Q Max
e Rat #2 is on average 2596 g below -3.5236 -0.5557 -0.0467 0.5667 3.0932
Rat #1 — but that estimate can only Random effects: S
. roups ame ariance .Dev.
be used for inference on Rat #2 Rat (Intercept) 1337.88 36.577

Residual 66.85 8.176
Number of obs: 176, groups: Rat, 16

* SO the interest usually lies in the
degree of variation in the random
grouping

» Here the variance between rats 4x
higher than the residual variance



Residuals from Random Effects

models

* The residuals() function gives
the residuals from the fixed
effect model

* The residuals object within the
summary() of the model, gives
the residuals from the BLUP
(best linear unbiased predictor)
that includes the random
effects

Residuals calculated w/o random effects

» head(residuals(REML.f1t))

1 P 3 4 5 6

-2.041451 3.858766 4.758983 5.659200 3.559417 -4.540366

Residuals calculated w/ random effects

> head(summary(REML.fit)$residuals)

1 2 3 4 5 6

-0.2496745 0.4719366 0.5820353 0.6921341 0.4353255 -0.5552980

* Estimates of prediction error should be based on the
fixed effects model without the random effects!
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