Prediction of total milk fat of dairy cows: A multimodel approach V.L. Daley and M.D. Hanigan

V. L. Daley Postdoctoral Research Associate National Animal Nutrition Program Modeling Commitee

COLLEGE OF AGRICULTURE AND LIFE SCIENCES VIRGINIA TECH.

University of

Kentuc

Why we care about milk fat?

- Source of energy, fatty acids, and bioactive lipids.
- Quality of dairy products
- Milk payment system
- Majority of milk value is determined by milk protein and fat
- Human health

Milk Fat

Figure 1. Milk fat synthesis

Milk Fat

Figure 1. Proteins and structure of the milk fat globule envelope. Robenek et al. Proceedings of the National Academy of Sciences of the United States of America 103 27 (2006): 10385-10390.

Diet

Diet composition Ration particle size Sources of fat Feed additives

The Problem

Predicting total milk fat has been challenging.

High unexplained variation among and within herds.

GRICUI TURF AND

Hypothesis

Dietary intakes of specific nutrients, diet composition, and animal characteristics were the primary drivers of total milk fat yield and could be used to predict milk fat responses to diet.

Objective

To develop prediction models for estimating total milk fat yield from:

- Fat-free dry matter intake (DMI),
- Intakes of specific nutrients (individual FAs and AAs),
- Diet composition,
- Characteristics of dairy cows.

Data collected by the National Animal Nutrition Program (https://animalnutrition.org/)

Data collection

Inclusion criteria

- Descriptions of all treatments
- · Milk fat and milk production
- Dry matter intake (DMI)
- Feed ingredients or diet composition
- Days in milk (DIM) and BW
- Number of animals

Database

- 158 studies (658 treatment means)
- 2,843 animals

Calculations

Dry matter intake (DMI) and diet composition

- Fat-free DMI (kg/d)
- Individual FA intakes (g/d)
- Individual AA intakes (g/d)
- NRC (2001) feed library
- CNCPS v6.5 feed library
- Individual intakes of digestible FA:

Daley et al. (2018)

Absorbed amounts of each AA:
 Fleming et al. (2019)

Table 1. Summary of the database used for estimating the milk fat model (n = 158 studies, 658 treatment means)

Variable	n	Mean	SD	Variable	n	Mean	SD
Animal performance				Diet composition, % of DM			
<mark>Milk yield, kg/d</mark>	658	<mark>32.4</mark>	6.9	Crude fat	658	4.2	1.3
Milk fat, %	658	3.56	0.42	Fatty acids (FA)	658	3.4	1.3
<mark>Milk fat, g/d</mark>	658	<mark>1143</mark>	236	Forage	658	<mark>50.8</mark>	10.3
Milk protein, %	654	3.09	0.21	Starch	658	<mark>27.5</mark>	7.0
Milk lactose, %	348	4.78	0.16	Crude protein (CP)	658	16.7	2.4
BW, kg	658	604	47	Rumen degradable protein	658	11.5	1.7
<mark>Days in milk, d</mark>	658	<mark>136</mark>	56				

Variable	n	Mean	SD
Intakes			
Dry matter intake (DMI), kg/d	658	21.4	3.4
Fat-free DMI, kg/d	658	<mark>20.6</mark>	3.2
Digestible energy (DE) intake, Mcal/d	658	66.5	11.1
Fat-free DE intake, Mcal/d	658	61.5	10.1
FA intake, g/d	658	731	310

Table 1. Summary of the database used for estimating the milk fat model (n = 158 studies, 658 treatment means)

Variable	n	Mean	SD		
Individual Intakes of FA, g/d					
C12:0	658	12	9		
C14:0	658	9	7		
C16:0	658	146	95		
C16:1	658	7	8		
C18:0	658	36	47		
C18:1 cis	658	162	101		
C18:1 trans	658	5	7		
C18:2	658	268	111		
C18:3	658	67	28		
Other FA	658	24	17		
C18:1 cis +	650	407	100		
C18:2 + C18:3	800	497	TQQ		

Variable	n	Mean	SD			
Individual intakes of absorbed AA, g/d						
Arg	658	113	24			
His	658	51	11			
lle	658	124	23			
Leu	658	193	43			
Lys	658	162	29			
Met	658	49	10			
Phe	658	123	24			
Thr	658	112	20			
Thp	658	28	5			
Val	658	133	25			

- Individual intakes of digestible FA (g/d)
 C12:0, C14:0, C16:0, C16:1, C18:0, C18:1cis, C18:1trans C18:2, C18:3
- Absorbed AA (g/d)

Arg, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Val

• Fat-free dry matter intake (kg/d)

Fat-free DMI = DMI – FA intake

- Dietary composition, % of DM Starch, forage, and rumen-degradable protein (RDP)
- BW (kg) and days in milk (DIM, d)

Candidate predictor variables

- ✓ R (version 3.5.1)
- ✓ Outliers 3 SD from the mean
- Multimodel inference using MuMIn package (pdredge)
- Mixed models (Ime4 package) included the study as the random effects
- ✓ Data were weighted using the square root of the number of animals represented in each treatment

Model

$$Y_{ij} = \beta_0 + s_i + \beta_{ij} \times X_{ij} + e_{ij},$$

Where:

Yij is the dependent variable, β_0 is the intercept, s_i represent the random effect of study, β_{ij} represent the regression coefficient of Y on X, X_{ij} represent the value of the predictor variables, e_{ij} the residual error.

 \checkmark The best models were selected on the basis of Akaike's information criterion with correction for small sample size (AICc).

- ✓ Variance inflation factor (VIF).
- ✓ Repeated cross evaluation (repeated 500 times, 15% testing and 85% training).
- ✓ Finals models were evaluated using root mean square error (RMSE) and concordance correlation coefficient (CCC).

Results

- Total 10,240 candidate models
- Best models VIF < 3

Figure 2. AICc of candidate models

Range of slope values Best 2000 models

Figure 3. Slopes of candidate variables from the set of 2000 best models

Range of slope values Best 2000 models

AGRICULTURE AN

Figure 3. Slopes of candidate variables from the set of 2000 best models. DI = Digestible intake.

Range of slope values Best 2000 models

Figure 3. Slopes of candidate variables from the set of 2000 best models DI = Digestible intake. Abs= absorbed.

- ✓ High variation for effects of digestible C12:0 and C14:0.
- ✓ Consistent positive effect of intake of digestible 16:0.
- ✓ High variation for effects of digestible of C18:0, C18:1cis, and C18:2.
- ✓ Consistent positive effect of intakes of absorbed Met, Ile, and Lys.

Results

Table 3. Best four models for estimating the milk fat yield (g/d) of dairy cows

	Model 1		Model 2		Model 3		Model 4	
Predictors	Estimate	SE	Estimate	SE	Estimate	SE	Estimate	SE
Intercept	446.9	57.1	407.1	70.6	452.9	57.1	522.4	64.2
Abs Ile, g/d	0.98	0.43	0.76	0.49	1.45	0.36	0.86	0.45
Abs Lys, g/d	0.53	0.28	0.48	0.28			0.44	0.29
Abs Met, g/d	1.23	0.53	1.25	0.53	1.34	0.53	1.13	0.54
DIM, d	-1.41	0.12	-1.40	0.12	-1.42	0.12	-1.44	0.12
Fat-free DMI, kg/d	23.64	3.06	24.89	3.32	24.52	3.03	29.35	3.11
DI of C16:0, g/d	0.40	0.07	0.41	0.07	0.40	0.07	0.40	0.07
DI of C18:3, g/d	1.81	0.35	1.83	0.35	1.80	0.35		
RDP, % DM			3.89	4.07				
Starch, % DM							-2.36	0.98
Model evaluation								
AIC _C	7869		7870		7870		7888	
CCC	0.806		0.806		0.806		0.802	
RMSE, %	14.11		14.10		14.09		14.23	

18

Figure 5. Model 3: Observed vs. predicted and residuals vs. predicted for milk fat yield (g/d). n = 658 treatment means.

Conclusion

- Intake of digestible C16:0 positively affected the milk fat yield.
- Intake of digestible C18:3 positively affected the milk fat yield of cows fed about 67 ± 28 g/d.
- Models containing intake of absorbed Met, Ile, and Lys had a better fit in comparison to other candidate models.
- The models developed can be used as a practical tool for predicting milk fat production of cows.

Photo: DD Silva, 2018. Parana State, Brazil

National Animal Nutrition Program Leveraging Resources, Linking Researchers

THANKYOU

Veridiana L Daley

veridi7@vt.du

COLLEGE OF AGRICULTURE AND LIFE SCIENCES VIRGINIA TECH.