

National Animal Nutrition Program Leveraging Resources, Linking Researchers

National Animal Nutrition Program: Development of online feed composition tables

Andres Schlageter Tello

Multi-State Poultry Feeding and Nutrition Conference

May 21-23, 2019. Indianapolis, Indiana

Outline

>National Animal Nutrition Program (NANP)

Feed composition tables

➢ Database

- Literature dataset
- Commercial laboratories dataset
- Work in progress
- Take home message

The National Animal Nutrition Program

National Animal Nutrition Program Organizational structure

Coordinating Committee – M. Lindemann (UK)

• Oversee and coordinate the work of the feed composition and modeling groups, to advise the National Academies on critical national priorities, and to provide a forum to address research support needs

Feed Composition Committee – P. Miller (UNL)

• Bring together data and research resources on feed composition, to foster communication among those collecting feed composition information, and to facilitate efficiencies and consistencies in data collection and maintenance

Modeling Committee – M. Hanigan (VT)

 To serve the animal nutrition research community by improving the use of predictive technologies and tools, to best utilize available platforms, and to work with researchers to effectively share, combine, manage, manipulate, and analyze models and modeling information.

National Animal Nutrition Program Feed Composition Committee

- Phil Miller (Chair), University of Nebraska (Swine)
- Andres Schlageter University of Kentucky/University of Nebraska (Data)
- Ryan Dilger, University of Illinois (Poultry)
- **Bill Dozier**, Auburn University (Poultry)
- Mark Edwards, Cal Poly San Luis Obispo (Equine)
- Alexander Hristov, Pennsylvania State University (Dairy)
- Brian Small, University of Idaho (Fish)
- Mark Nelson, Washington State University (Beef)
- Casey Bradley, DSM (Swine)
- William Weiss, The Ohio State University (Dairy)

National Animal Nutrition Program Activities and "Products"

> Workshops and symposia:

- Summit 2019: Producing Food with Animals. Sustainability, Efficiency and Security in US
- ADSA 2019: Workshop, NANP nutrition models
- ASAS 2019: Ruminant and Non-ruminant feed composition symposium

> Webpage resources:

- NANP Publications (Abstracts, conferences papers and peer-reviewed papers)
- Slides and videos from conferences
- Codes

Webpage databases:

- Modeling database (performance of animals for modeling purposes)
- Feed composition database

Feed Composition Tables

Feed composition tables

rn grain, d	ry (Grain products)		Back	to Categories Back to Feedstuff List
Ingredient:	Corn grain, dry	 Display Basis: Dry 	Matter OAs Fed O	
		DM Content (%):	100	Clear All Filters
Definition: Dried could be ground size by passing g	seeds of Zea mays. Seeds or rolled (i.e. reduced in partic rains between rollers)	le Year Start	Year End	
AAFCO : 48.4, Ground corn		Year Start	Year End	
IFN: 4-02-861, Ma	iize, grain ground			
EU: 1.2.1, Maize		Data Type		
Alternate Names:		Peer Reviewed	0	
Corn grain dry, ground, Corn grain, rolled, Corn, yellow dent,		W Commercial O		
Scientific Name: Z	ea mays sp. mays	🔲 Academic 🛈		

Main Constituents Carbohydrates Proteins Lipids Minerals Vitamins

Main Constituents

Nutrient (percentage of dry matter)	n 🛈	Mean	SD ()	CV ()	10th Percentile	90th Percentile
Actual Dry Matter (DM, %)	400	88.10	2.00	2.27	85.81	90.38
Crude Protein (CP, %)	395	9.21	1.24	13.42	7.82	10.71
Crude Fiber (CF, %)	153	2.19	1.12	51.13	1.15	3.30
Ether Extract (EE, %)	306	3.99	1.07	26.72	3.01	5.00
Acid Ether Extract (AEE, %)	27	4.41	1.25	28.37	3.06	6.80
Ash (%)	227	1.60	1.06	66.24	1.16	1.80
Gross Energy (GE, kcal/kg)	90	4,543.60	223.19	4.91	4,396.97	4,836.66

Database and datasets

Current Database

	 Feed composition (127 null) 7 Main constituents 28 Carbohydrates 22 Protein related nutrient 30 Fat related nutrients 23 Minerals 17 Vitamins 	trients)
Feed names:	Nutrient definition (in pro	ogress) Nutritive values (in progress)
• NANP	• 127 Nutrients	AME and Aa digestibility(Poultry)
AAFCO	 128 nutritive values 	• NE and Digestibility CP, Aa, P (Swine)
International Feed Nomenclature		 NEI, NEm and degradability CP, NDF (Dairy)
European Union		 NEg, NEm and degradability CP (Beef)
Definition		

Current Database: dataset

> Initially consolidating datasets from different NASEM/NRC committees

- Literature datasets (swine, poultry)
- Commercial laboratory datasets (beef, dairy)

Current dataset (from literature only)

- 4,807 feed samples
- 99 different ingredients
- 67 unique nutrients

Near future dataset

- ~ 2 million feed samples
- 371 different ingredients
- 137 unique nutrients

Complete dataset is available under request

Dataset: Literature data

Literature data are collected with literature reviews

Swine NRC 2012

- Articles published between 1998 and 2011
- 2,777 feed samples
- 147 unique ingredients
- 67 nutrients

Database update (Poultry NASEM 2020?)

- Systematic literature review
- Articles (> 30K) published between 2011 and 2018
- 2,130 feed samples
- 131 different ingredients
- 91 unique nutrients

Dataset: Literature data

> Advantages

- Better method to obtain unbiased data?
- Datasets are small an easy to manage (excel)
- Obtain information of nutrient not commonly analyzed (Amino acids, fatty acids, non-starch polysaccharides)

Disadvantages

- Values may not be representative of a feed (specially in feeds with low number of samples)
- Time consuming (gather and review data)
- Mistakes
 - \circ Typing
 - Units % DM or % CP % or g/Kg

Dataset: Commercial lab data

Beef NASEM 2016

- 3 commercial laboratories
- 1.1 million feed samples
- > 200 unique ingredients
- 33 different nutrients

Dairy NASEM 2020?

- 4 commercial laboratories
- 2.7 million feed samples
- > 200 unique ingredients
- 37 different nutrients

Dataset: Commercial lab data

Advantages

• Large datasets improves ensures analytes are more representative of the nutrient composition of feedstuffs being evaluated

Disadvantages

- Datasets have millions of data and have mistakes
- File formats, data structure, and feed classifications differ among the feed testing laboratories.
- Data management requires computer codes and high processing power.

Data management is difficult!!!

Commercial lab data: Understand your data

Histograms for different nutrients in a feed initially identified as wheat grain

National Animal Nutrition Program

Commercial lab data: Understand your data

Histograms for different nutrients in a feed initially identified as corn gluten meal

Corn gluten meal composition according NANP

Dry Matter % = 91.5 ± 2.0

Crude Protein % = 63.2 ± 7.8

NDF % = 9.1 ± 6.6

Screening procedure for large dataset

Commercial lab data: Pre-screening

> Delete not valid samples:

- Unidentified samples
- Samples without values
- Repeated samples
- Samples referring to total mixed ration, concentrate, commercial brands or minerals
- Non-feed samples (water and manure)

> Standardize different sources:

- Standardize dataset structures (arrange columns in same order)
- Standardize feed names
- Standardize nutrient names and units

Pre-screening took 60% of time of the screening procedure

Pre-screening: Standardize different sources

Nutrient analytics in datasets provided by four commercial laboratories

Laboratory 1	Laboratory 2	Laboratory 3	Laboratory 4	Final
DM	DM	DM	DM	DM
Ash	Ash	Ash	Ash	Ash
Starch	Starch	Starch	Starch	Starch
Fat	Fat	Fat	Fat	Fat
Total Fatty Acids	Total Fatty Acids			Total Fatty Acids
NDF	NDF	NDF	NDF	NDF
ADF	ADF	ADF	ADF	ADF
	Water sol carb	Sugar		Water sol carb
Ethanol Sol Carb	Ethanol Sol Carb	Ethanol Sol Carb	Ethanol Sol Carb	Ethanol Sol Carb
Lignin	Lignin	Lignin	Lignin	Lignin
Crude protein	Crude protein	Crude protein	Crude protein	Crude protein
Soluble Protein	Soluble Protein	Soluble Protein	Soluble Protein	Soluble Protein
ADICP (% CP)	ADICP (% DM)	ADICP (% DM)	ADICP (% CP)	ADICP
NDICP (% CP)	NDICP (% DM)	NDICP (% DM)	NDICP (% CP)	NDICP
		NDFD24		NDFD24
	NDFD30	NDFD30	sNDFD30	NDFD30
NDFD48	NDFD48	NDFD48	sNDFD48	NDFD48
NDFD240				NDFD240
Starch digest		Starch digest		Starch digest

Screening procedure for large dataset

Univariate: Delete outliers

Principal Component Analysis (PCA)

- Reduce dimensionality (In this case dimensions are different nutrients used to classify feeds, i.e. DM, CP, NDF etc)
- Retain as much variation as possible
- Linear transformation of the original variables
- PCA + Clustering is a widely used protocol, provide better clusters when comparted with using

Grouping similar data into a single group

Hierarchical clustering: When to stop? Pseudo F and Pseudo t to select optimal number of clusters

Screening procedure for large datasets

Cluster Evaluation

Cluster Evaluation

Cluster evaluation procedure was performed according authors' expertise in feed composition.

> Some of the procedures used in cluster evaluation included:

- Repeating the screening procedure (the automated statistical screening procedure was repeated between 1 and 5 times).
- Merging files initially identified as different feeds to create a new input file
- Merging clusters generated from different initial input files
- Retrieving clusters removed by the procedure,
- Manual manipulation of cluster's datasets

Clustering example

Initial dataset identified as Soybean meal

Output clusters identified as:

Soybean meal solvent extracted
 Soybean meal mechanical extracted

https://animalnutrition.org/

everaging Resources, Linking Researchers

Clustering example

Output clusters for a dataset initially identified as Bakery byproduct

Screening procedure for large datasets

Data Summary

rn grain, d	FY (Grain products)			B	ack to Categories Back to Feedstuff Lis
Ingredient:	Corn grain, dry		Display Basis: Dry 	Matter 🔍 As Fed 🛈	
			DM Content (%):	100	Clear All Filters
Definition: Dried could be ground size by passing g	l seeds of Zea mays. See or rolled (i.e. reduced in p rains between rollers)	eds particle	Year Start	Year End	
AAFCO : 48.4, Ground corn		Year Start	Year End		
IFN: 4-02-861, Ma	aize, grain ground		i Lostrer, Konderne		
EU: 1.2.1, Maize			Data Type		
Alternate Names:			Peer Reviewed	0	
Corn grain dry, grou dent,	und, Corn grain, rolled, Corn,	yellow	Commercial O		
Scientific Name: Z	'ea mays sp. mays		🔲 Academic 🛈		

Main Constituents	Carbohydrates	Proteins	Lipids	Minerals	Vitamins	
Jain Constitu	onto					

Main Constituents

Nutrient (percentage of dry matter)	n O	Mean	SD @	CV @	10th Percentile	90th Percentile
Actual Dry Matter (DM, %)	400	88.10	2.00	2.27	85.81	90.38
Crude Protein (CP, %)	395	9.21	1.24	13.42	7.82	10.71
Crude Fiber (CF, %)	153	2.19	1.12	51.13	1.15	3.30
Ether Extract (EE, %)	306	3.99	1.07	26.72	3.01	5.00
Acid Ether Extract (AEE, %)	27	4.41	1.25	28.37	3.06	6.80
Ash (%)	227	1.60	1.06	66.24	1.16	1.80
Gross Energy (GE, kcal/kg)	90	4,543.60	223.19	4.91	4,396.97	4,836.66

Screening procedure for large datasets

> Advantages

- Eliminated outlier data points
- The procedure was helpful to correctly classify feeds:
 - Oilseeds and oilseed meals according to crude fat values
 - By-products and grains as dry or wet according dry matter (DM) content
 - Identify misclassified samples in feed similar names
 - Classify forages according to storage method
 - Classify forages according maturity stage
 - Classify samples as predominantly-grass or predominantly-legume

Disadvantages

- About 50% of data were deleted
- Time consuming

Work in progress

New methods to classify feeds Decision tree

- Classification algorithm
- Split the main dataset into two or more homogeneous datasets based on most significant differentiator/splitter in input variables.
- Decision trees are easy to create and understand. However, they tend to over fit.

New methods to classify feeds Random forest

- Classification algorithm.
- Ensemble method: combine several base models in order to produce a better predictive (classifier) model.
- Each decision tree classify a sample in a group. The sample is classified according the aggregated results of each decision tree.

New methods to classify feeds Preliminary results

Precision of decision tree and random forest algorithms to classify different corn grain feeds

Feed	Decision tree	Random forest
Corn germ	89%	92%
Corn germ meal	96%	99%
Corn gluten feed, dry	99%	100%
Corn gluten feed, wet	100%	100%
Corn gluten meal	100%	100%
Corn grain, dry	90%	93%
Corn grain, high moisture	99%	99%
Corn grain steam flaked	72%	81%
Corn hominy feed	89%	94%
Corn screenings	72%	80%

Collecting information about:

> Non-Starch polysaccharides

- Systematic literature review
- Nutritive values for different species. For poultry...
 - Apparent metabolizable energy and apparent metabolizable energy nitrogen corrected
 - Apparent ileal digestibility for amino acids
 - Standard ileal digestibility for amino acids

Include more species

- Fish
- Horses
- Small ruminants

Take home message

- The National Animal Nutrition Program (NANP) is creating multispecies feed composition datasets and tables.
- Feed composition tables are constructed using nutrition information from literature and commercial laboratories.
- All information created by NANP can be found at https://animalnutrition.org/
- Datasets are available under request

