IOWA STATE UNIVERSITY

Department of Animal Science

Cross Validation and Bootstrapping in Evaluating Linear Regression Models

Ranga Appuhamy¹ & Luis Moraes² ¹Iowa State University; ²The Ohio State University

Modeling

Error = *Predicted value* (\hat{Y}) – *Observed value* (Y)

Predicted	Observed	Error	Absolute error	Squared error		
10	12	-2	2	4		
9	7	2	2	4		
13	10	3	3	9		
8	8	0	0	0		
11	14	-3	3	9		
			2.0 (MAE)	5.2 (MSPE)		

$$RMSPE = \sqrt{MSPE} = 2.28$$

2

IOWA STATE UNIVERSITY

Model Evaluation

IOWA STATE UNIVERSITY

F

Model Evaluation

Hold-out method

F

Disadvantages

- does not use all available data
- the error estimates highly depend on the split

IOWA STATE UNIVERSITY

Cross Validation

- Multiple rounds of data splitting
- Each data point has a chance of being validated against
 - 1. K-fold cross validation
 - 2. Leave-one-out cross validation (LOOCV)

K-fold cross validation

IOWA STATE UNIVERSITY

IOWA STATE UNIVERSITY

K-fold Cross validation (N=20 & K=4)

N = 20 & K = 4

IOWA STATE UNIVERSITY

Leave-one-out Cross validation (LOOCV); K = N

IOWA STATE UNIVERSITY

F

Leave-one-out Cross validation (LOOCV)

IOWA STATE UNIVERSITY

Ę

Hold-out method

1	2	3	4	5	6	7	8	9	10
---	---	---	---	---	---	---	---	---	----

ModelModeldevelopmentevaluation

 $1 \times \text{RMSPE}$

1 2 3 4 5 6 7 8 9 10

Model development

10

More information about model performance

IOWA STATE UNIVERSITY

F	$\frac{\text{K-fold CV}}{\text{K}=3}$									
	1	2	3	4	5	6	7	8	9	10
	1	2	3	4	5	6	7	8	9	10
	1	2	3	4	5	6	7	8	9	10

55% overlapping (among training data)

11

IOWA STATE UNIVERSITY

Repeated K-fold cross validation

Ę

- \succ K remains the same
- > The overlapping remains the same
- Increased number of performance estimates (e.g., 3 vs. 9 RMSPE)

IOWA STATE UNIVERSITY

The caret package in R

<u>**Two functions**</u> 1. trainControl

SplitRule=trainControl(method="cv", number=10)

2. train

train(CH4~DMI, data=dat, trControl=SplitRule, method="lm")

IOWA STATE UNIVERSITY

Bootstrapping

Main purpose

Determining standard errors and confidence intervals of

1, parameters in the model $(Y_i = \beta_0 + \beta_1 X_i)$

2, model performance estimates (RMSPE, MAE, R²)

Ranga Appuhamy Department of Animal Science

14

IOWA STATE UNIVERSITY

 The 95% confidence interval of R² value? (no standard method available)

15

IOWA STATE UNIVERSITY

F

Theoretically.....

Parent population

F

IOWA STATE UNIVERSITY

Central limit theorem

The distribution of a sample statistic approximates a normal distribution as the sample size (N) gets larger (usually >30), regardless of true population distribution shape.

IOWA STATE UNIVERSITY

Bootstrap Resampling

IOWA STATE UNIVERSITY

How do bootstrap samples become independent?

Bootstrap sampling is performed with replacement

19

IOWA STATE UNIVERSITY

F

Size of bootstrap samples are as large as the original sample (N)

IOWA STATE UNIVERSITY

F

Ranga Appuhamy Department of Animal Science

20

IyeqymOU&t=429s

IOWA STATE UNIVERSITY

Boot package in R

https://www.statmethods.net/advstats/bootstrapping.html

22

IOWA STATE UNIVERSITY

Questions?

23

IOWA STATE UNIVERSITY