

Estimating Model Parameters

Mark D. Hanigan Professor Department of Dairy Science Virginia Tech

NANP Modeling Subcommittee

Background

- Data Interpretation → Knowledge/Understanding
 - Means separation: Trt A \neq Trt B
 - Regression slope or intercept
 - Slope differs from 0
 - Slope varies by treatment
 - Slope is a function of other factors
 - Biological process
 - \neq 0; it exists

2

- Is a function of X, Y, or Z
- Is affected by treatment
- Predict outcomes \rightarrow a working model

- Milk fat output = α (FAIn) - β (C18:2In) + χ (NDFIn) +

Models Require Parameters

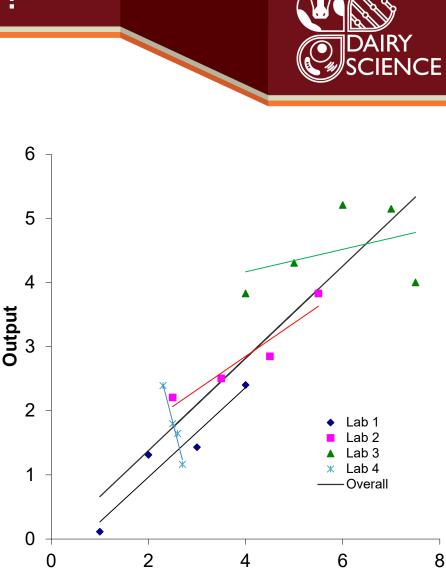
$$\hat{Y}_i = a(X_i) + b$$

$$res_{i} = Y_{i} - \hat{Y}_{i}$$
$$\sum_{i=1}^{N_{i}} \left(Y_{i} - \hat{Y}_{i}\right)^{2} = SSR$$

- (a, b) defined by the minimum of SSR
 - (a, b) fitted to data
 - Minimize residuals
- Change in SSR as (a, b) are varied
 - d(SSR)/d(a,b) = Hessian
 - Analytical
 - Numerical (finite diff)
 - SE and P
- Optimization methods
 - Slope based \rightarrow Hessian
 - Quadratics or simplex
 - Random exploration
 - genetic algorithms

What Can Go Wrong?

- Data Quality
 - Measurement variance
 - Outliers
 - Lack of Range
 - High leverage points
 - Data not normally distributed
 - Inadequate observations
 - Undefined factors
- Extreme caution with random effects
 - Global slope should = w/in study slopes
 - Random effects unknown in the field
- Model Structure
 - Wrong model
 - Not enough complexity
 - Too much complexity



Input

Solutions

- Data Normality
 - Transform: log or other
 - Non-parametric approach
- Outliers & high leverage
 - Remove based on residuals
 - Log-likelihood function

- also solves normality if

$$LLF = \frac{1}{2} \sum_{j=1}^{r} \left[n_{j} \left(\log\left(2\pi\right) + 1\right) + n_{j} \log\left(\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} \left(\frac{Y_{i,j} - \hat{Y}_{i,j}}{\hat{Y}_{i,j}}\right)^{2}\right) \right]$$

- Other effects
 - Represent in the model?
 - Adjust the data for random effects
 - Study
 - Location
 - Laboratory
 - Student ?-)

Data Weighting

- Why?
 - Confidence($LSM_{N=4} = LSM_{N=12}$)?
 - Confidence(Latin $Sq_{N=6} = Rand Block_{N=6}$)?
 - Confidence(Lab 1 = Lab 2)?
- Solution
 - Weight the data
 - 1/sqrt(SEM) captures all of the above (in a perfect world)
 - SEM vs SED vs SD: must convert to a common reference
 - Older fixed effects models ≠ newer random effects models
 - SAS GLM problem
 - SEM under-reported for random effect models for repeated measure designs
 - » LS, crossover, Youden squares
 - ID software, procedure, fixed vs random, design and attempt to correct
 - Model specification problems or reporting errors (SEM_{Milk}=0.1 kg/d???)
 - Weight by sqrt(N)
 - Highly unlikely to be mis-reported
 - No assumptions or transformations required
 - Captures most of the study design variance
 - Misses laboratory expertise
 - More important for technically difficult measurements, i.e. ruminal outflow

L1_5: Meta Analysis using Mixed Models

- Open and execute 'Load Observed Data.R³
 - Data loaded into the "o" dataframe
 - >ls(o) to see the list of variables
 - >head(o) to see a sample of the data
 - >o to see all of the data
 - >length(o\$TID) for N
- Open Lesson 1 Exercise 5 script
 - >sqrt(o\$N_Study) to see the variance in potential weighting
 - Big difference?
 - >Imod <- Imer(Obs_RUPIn ~ Dt_CPIn + (1|PubID), data=o, weights = sqrt(N_study), REML=FALSE)
 - Imer = linear mixed effect regression (Ime4 package)
 - Obs_RUPIn = Total N Micr N predicted Endog N
 - REML = FALSE yields a Max Likelihood solution
 - What is the DC estimate? And SE?

Non-linear Mixed Effects Model

- NLin models has more complexity
 - formnlmer <- ~ Int + Dt_CPAIn * KpA + Dt_CPBIn * KpB/(KdRUP + KpB) + Dt_CPCIn * KpC
 - form.d <- deriv(formnlmer, parms1, function.arg = args1)</pre>
 - Obs_RUPIn ~ form.d(Dt_CPAIn, Dt_CPBIn, Dt_CPCIn, KdRUP,Int, KpA, KpB, KpC) ~ (Int|PubID)
 - Solving for:
 - Int
 - Kp_a
 - Kp_b
 - Kp_c
 - Kd = in situ observations
- Requires an intercept for ME
- Allows data weighting, but doesn't converge for this problem
- What are the parm estimates?

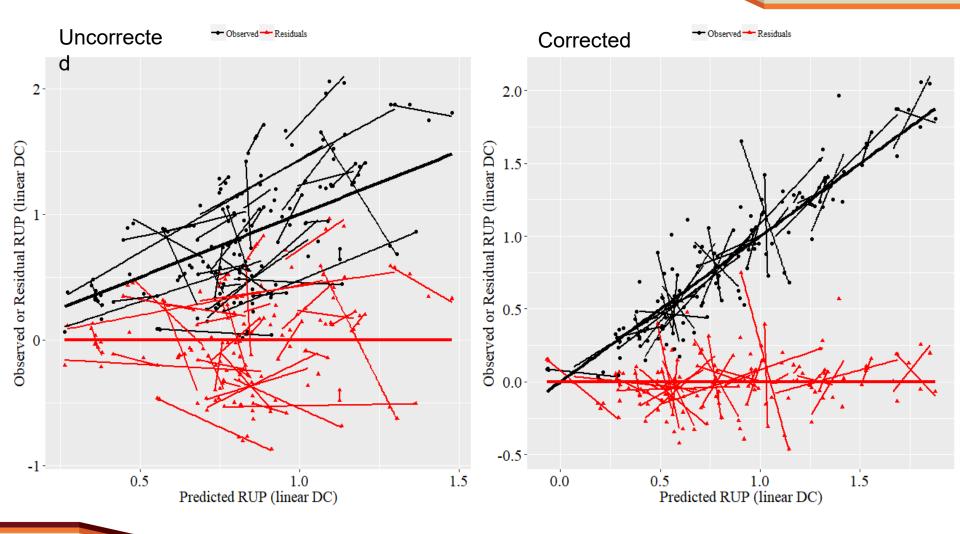
Model Solution Evaluation

Model	DC	Кр/Кр	
AIC	59.7	71.7	
BIC	68.5	86.6	
Log Likelihood	-25.8	-28.3	
RMSE (re.form=NA)	47.4%		
RMSE (re.form=T)	18.9%	22.3%	
CCC (re.form=NA)	0.489		
CCC (re.form=T)	0.917	0.920	
Mean Bias	0.0%	0.0%	
Sloper Biaswith random effects%			

 uncorr likely reflects novel/field performance

- Lower AIC/BIC is better
- Greater Log Likelihood is better
- Simple DC with an intercept is better
- RMSE Anal and Plot Residuals
 - Load RMSE_CCC Functions and execute
 - Load Graph Residuals Functions and exec
 - obs <- o\$Obs_RUPIn</p>
 - predl <- predict(Imod, re.form=NA)</pre>
 - re.form=NA controls use of random effects (false)
 - Doesn't work correctly for nlmer
 - re.form=TRUE to correct for random effects
 - RMSE(obs,predl)
 - resprgrpplt(obs,predI,o\$PubID,"RUP (linear DC)")
 - Plot or regress against all inputs
- Evaluate against other possible inputs

Residuals for the Linear Model



Centering Variables – Script 6

- Easy with a function
- c. <- function (x) scale(x, scale = FALSE) #Center x yielding c.x

mTPmod <- Imer(Obs_MilkTP_g ~ ... + Abs_EAA_g + Parity_rl + c.(Year) + (1|PubID), data=o, weights = sqrt(N_study), REML=FALSE)

- Term is independent of the intercept
- Can be removed or added without affecting Intercept
- Does not change correlation with other Parms

Dynamic Model Fitting

Many pieces - test each

- 1. The model
 - Typically a Rate/State approach
 - Define the flux (rate) equations
 - Define the differential eqns for each pool (state variables)
 - Provide initial pool size estimates
 - Provide initial parameter estimates
 - Provide model inputs
- 2. Observed data (as before)
- 3. Residual error data (Obj.f)
 - Run the model to simulate each subject
 - Collect predicted values for appropriate time points (pred.f)
 - Calculate residuals (Obs Pred)
 - weight? and scale??
- 4. Optimizer
 - The model function
 - Objective function (Obj.f)
 - List of parameters to fit
 - Initial parameter estimates
 - Parameter bounds

A dynamic rumen model: script

- Script 3 defines a 3-pool rumen model with linear absorption from the SI
 - CP
 - CHO
 - MiCP
 - MiCP a fn of RDP and RDCHO
 - Absorption a function of RUP and MiCP
 - Uses numerical integration to predict steady state
- Execute the script to define the model function
 - Note model behavior in plots (back arrow to view more)
 - Why are there changes over time in the fluxes?
 - How would we compare model output to animal observations?
 - Where are these data coming from? Type >out
- What do you expect to happen if the rate of passage increases?
 - Kp=0.06
 - Call the model function with revised Kp and collect in out2
 - Compare out with out 2
 - What happens to the ruminal DC for CP and CHO as Kp increases?

Parameter Estimation: Script

- Contains the code to fit the model to the data
- 1. Load initial parameters and test model output to verify
- 2. Select parms to fit
 - Start with 1 parm (Kp)
- 3. Provide initial parameter guesses
- 4. Create lb and ub vectors
- 5. Select obs vars to fit against
- 6. Specify which model times to use for comparison to data
 - Start with 1 obs var (FCpSI)
- 7. Execute Obj.f and pred.f functions to get them in memory
- 8. Scale the residuals = TRUE
- 9. Execute modFit statement to fit the parameters to the data
- 10. Review output
 - >summary(m1)
 - Converged? Note the list elements in m1
 - >m1\$info
 - Print(m1) to list all element contents
 - Logical answers?
 - SE acceptable (<50% of the estimate)

Other Observations/Questions

- What is the RMSE?
 - Transfer final parms to the model inputs
 - Collect pred vals using pred.f function
 - Calculate residuals
 - Execute RMSE function
 - Good or bad?
 - Is RUP flow biased?
- What is the CCC?
 - Good or bad?
- Plot residuals
 - Load plotting functions
 - resprpit(obs,pred,"RUP") to plot residuals without lines by study
 - Make studies vector >studies <- o[, "PubID"]
 - resprgrpplt(obs,pred,studies,"RUP") to plot with lines by study

Fit Other Parms

- Update the Kp value in the parameters vector list
- Select KdCho and fit it against FChoSi
- Update parameters and try fitting Kp and KdCho at the same time
- Update KdCho in parameters and repeat to fit KRdp to FCpMiSi
- Update parameters and fit all 3 at once

SE and Correlations

Parameters:

Estimate Std. Error t value Pr(>|t|) Kp 4.478e-02 7.540e-03 5.94 5.72e-09 *** KdCho 4.862e-02 8.200e-03 5.93 6.06e-09 *** KRdp 5.493e-16 3.868e-03 0.00 1 ----Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 0.002585 on 450 degrees of freedom

Parameter correlation:

KpKdChoKRdpKp1.000000.998550.07624KdCho0.998551.000000.07996KRdp0.076240.079961.00000

Predicted Microbial CP Flow

0.10-Observed or Residual MiP 0.05-0.00 -0.05 0.08 0.10 0.04 0.06 0.02 Predicted MiP

••• Observed • •• Residuals

RMSE and CCC

Microbial CP Flow

RMSE(obs\$FCpSi,pred\$FCpSi)				
	Statistic	Values		
1	Ν	151.000000		
2	Observed Mean	0.045886		
3	Predicted Mean	0.044131		
4	RMSE	0.004714		
5	RMSE, % mean	10.272802		
6	Mean Bias, % MSE	13.865398		
7	Slope Bias, % MSE	26.464249		
8	Dispersion, % MSE	59.670353		
9	Mean Bias	0.001755		
10	Slope Bias	-0.157152		
11	P-Mean Bias	0.000100		
12	P-Slope Bias	0.000100		
13	RSR	0.347864		
14	CCC	0.947544		

CHO Outflow

RMSE(obs\$FChoSi,pred\$FChoSi)				
	Statistic	Values		
1	N	151.000000		
2	Observed Mean	0.207109		
3	Predicted Mean	0.204671		
4	RMSE	0.021165		
5	RMSE, % mean	10.219235		
6	Mean Bias, % MSE	1.326393		
7	Slope Bias, % MSE	12.814169		
8	Dispersion, % MSE	85.859438		
9	Mean Bias	0.002438		
10	Slope Bias	-0.114925		
11	P-Mean Bias	0.157690		
12	P-Slope Bias	0.000100		
13	RSR	0.342693		
14	CCC	0.944976		

- Fit intestinal absorption coefficients against fecal outputs
- Address the slope bias in microbial CP flow
 - Other drivers may be required
 - Plot residuals against other available observations (hypothesis testing)
- Remove the RDP driver in MiCP??
- Check for normality of residuals
- Check for residuals outliers and remove?
- Finalize fits

Need to code an LLF and try with that