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The lactation curve in cattle: a mathematical model
of the mammary gland

By HEATHER D. ST. C. NEAL axp J. H. M. THORNLEY
The Grassland Research Institute, Hurley, Maidenhead, Berkshire, SL6 S5LE

(Recetved 9 February 1983)

SUMMARY

A simple model of the mammary gland is described. In this model secretory cells
are produced by cell division from undifferentiated cells, and the rate of division is -
determined by the level of a postulated hormone. The total activity of the milk secreting
cells depends on the number of cells, substrate supply (assumed constant), and the
amount of milk currently present in the animal. The secretory cells have a finite life,
although their death may be expedited by milk remeaining in the animal over a longer
period of time. The model gives a good description of an experimental lactation curve;
it is able to simulate the removal of milk by a suckling calf and machine milking with

a varigble number of milking periods a day.

INTRODUCTION

A biologically based quantitative description of
the lactation curve of a dairy cow is of interest to
many, inctuding physiologists, nutritionists, and
agricultural extension workers. While it may prove
impossible to supply the needs of these different
groups simultaneously, at present thers is nothing
in-between the pure empiricism of a curve-fitting
spproach and very detailed qualitative descrip-
tions of structure and function. In this paper an
attempt is made to bridge this gap by means of a
gimplified view of the binlogy of the situation, and
its subsequent mathematical representation. The
principal objective is to predict the time course of
milk production over a single lactation, by means
of & simple mechanistic model of the mammary
glend of a dairy cow.

Much research has been carried out into the
growth and development of the mammary glend,
the synthesis of milk by the secretory cells around
the alveoli, and the various hormonal and endo-
crinal mechanisms that ensure that the milk is
available when the young animal or machine is
ready to remove it (Cowie & Tindal, 1971; Austin
& Short, 1972; Mepham, 1976). Curves have been
fitted to lactation data by Gaines (1927) and
Nelder (1966), and more recently gamma functions
have been applied by Wood (1967) principally and
by Cobby & Le Du (1978), Dhanoa (1981) and
Rowlands, Lucey & Russell (1982). These have
been widely used for experimental and praectical
purposes. Wood (1977) has also examined the path-

wajys of energy utilization in a cow, in an endeavour
to provide a biological interpretation for the
coefficients of his fitted curve.

The model of the mammary gland described here
is connected to the animal in two points : nutritional
inputs and & hormonal input. It is based on the
number and activity of secretory cells. Only those
biological components are included which appear
to dominate the systern and determine the main
features of the typical lactation curve. While it can
always be disputed whet can and cannot be
reasonably left out of a model that attempts to be
mechanistic at & certain level, in this first attept
at this problem, simplicity has been chosen in
preference to a rapidly escalating complexity.

THE MODEL

The overall scheme is shown in Fig. 1 and the
principal symbols are listed in Table 1. It is
agssumed that the supply of metabolites by the
blood for milk synthesis and cell growth in the
mammary gland is non-limiting. The mammary
gland itself is represented by undifferentiated cells
of number C,, cells of number C,, which have dif-
ferentiated and are adapted to secrete milk, and a
storage compertment representing the ducts,
alveoli and gland cistern containing M kg milk. It is
postulated that a hormone H controls the rate at
which the undifferentiated cells C, divide to give
active secretory cells. The amount of wmilk in the
animal, M, which if it is large may indicate in-
complete removal of millk from the mammary
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Fig. 1. Model of mammary gland. State variables are shown in the boxes; the valve symbols denote
processes of transformation or tremsport. ————, where variables are assumed to affect the rates of
processes in the model; - - -« -, potential interactions which are not part of the present model.

gland, may set up immediate direct and long-term
indirect responses mediated by hormones, bio-
chemistry and physical pressure. The time variable
t is measured in days, and the period of time under
consideration is from parturition, throughout a
whole lactation, until the cow is dried off,

The concentration of metabolites in the blood is
I denoted by & single variable, ‘substrate’, with
! concentration 8 (kg/m3).

Hormone, H

In mammals, onset of lactation is caused by a
change of hormone concentrations at or around
parturition. In cattle, several hormones are
involved and their concentrations in the blood
decrease as lactation proceeds (Mepham, 1976). In
the model, these hormones are represented by a
concentration of a single hormone, H, with units
of kg/md. It is assumed that a single pulse of
hormone is produced et time ¢ = 0 in response to
perturition, and this decays exponentially with
rate constant kg (per day), to give the differential
equation

- - —kyH, withH=H, at t=0. (1)

Integrating equation (1), therefore,
H = Hye g, (2)

Division of undifferentiated cells, C,

The progeny of these cell divisions may be un-
differentiated, or may differentiate into specialized
cells. It is assumed that the rates of division and
differentiation are such that the number of un-
differentiated cells does not change, to give

dac,
E’—‘ =0 and C, = constant. (3)

With binary division, this may be achieved if, for
each division producing two cells, one of these cells
is committed to differentiation, and the other cell
remains undifferentiated. As shown by the dashed
line in Fig. 1, the cell division rate v (divisions/day)

|
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A model of the mammary gland

Table 1. Principal symbols

Tndependent variable:
¢ time days
State variables:
A nurnber of secretory cells UL,
H hormone effector of ceil kg/m?® Lo
division -
M quantity of milk in animel kg
M time average of M kg

Other variables and quantities:

m(t) milking function, a forced kg/day
variable (equations 10
and 13)

Y total milk yield over kg
lactation

Parameters:

g, number of undifferentiated
cells (equation 3)

Kg  cell-division rate kg hormone/m?
Micheaelis—-Menten constant
(equation 4)

Ky  milk removal constant kg
(equation 9)

kx hormone decsy rate per day
(equation 1)

ky milk secretion constant kg/cell/day
(equation 8)

Kgr  milk secretion rate kg

Michaelis-Menten constant
(equation 8)

k. milk averaging constant per day
(equation 15)

kq basal cell degradation per day
rate (equation 6)

k,;  milk-induced cell per day
degradation rate constant
(equation 6)

M, parameter of equation (6) kg

M,  milk capacity of animal kg

(equation 8)
q parameter of equation (6) kg

Y maximum cell division divisions/cell/
rate parameter day
(equation 4)

7Ty PDarammeters of milking kg/day
function m(t)

t,, ... parameters of milking day

function m(t)

is influenced by the hormone concentration H, and
it ig assumed that

H
v = vy |[—=) Cu
g (KH+)

where v,, defines the maximum response (divisions/
cell/day), and Ky (kg/m?) is a Michaelis-Menten
constant giving half-maximal hormone response.

(4)
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Fig. 2. Specific loss rate of secretory cells, the quantity
in curly brackets in equation (), is plotted against the
averaged amount of milk in the animal, M (equation
15). Parameters are: k, = 01 per day, k;;; = 0-2 per
day, M, = 27 kg, and ¢ = 10.

Production and loss of secretory cells, C,

The number of secretory cells continues to in-
crease in early lactation (Mumford, 1964). Here
it is assumed that secretory cells are produced
at a rate P, equal to the cell division rate given
by equation (4), so that

=) o

P=v=v,|0—5 5
8 14 Vm(KH_I_H ()

Although differentiating cells will often divide
slowly, it is assumed here that the differentiated
secretory cells are produced fully mature and no
further growth or division occurs.

It is assumed that the cells die after a certain
length of time with a specific degradation rate %,
(per day). However, this degradation rate will be
increased if the milk is not removed from the
animal over a period of time, owing to biochemical
and physical pressure effects (Mepham, 1976).
Thus, & high value of milk in the animal M will lead
to a higher rate of degradation. It is assumed that it
is an average over a recent time interval that causes
this effect, and this average is denoted by M, which
is derived from M by equation (15) below. The
basal degradation rate k,is supplemented by a term
dependent on M, to give a total rate of loss of
secretory cells L, given by

(M /M)

L= *{k,+ksM W?/Tw]} o9

where [k, is a constant (per day) giving the
asymptotic value of the second term, M, (kg) is a
parameter giving the half-response point (when
M = M,, the quantity in square brackets equals
0-5), and ¢ is a dimensionless parameter which
determines the steepness of the response. The
specific cell loss rate (equal to the quantity in
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curly brackets) is shown in Fig. 2 as a function of
M.

The differential equation for the number of
secretory cells C, is therefore

do, _ H
E = I,‘;—I/s = Vn (K__H-l-H) 0“
(B2 / M)
{0

Secretion and removal of millk, M

It is assumed that the rate of secretion of milk,
P,, (kg/day), is proportional to the number of
secretory cells C,. According to Knight (1981),
gecretory cells have a maximum rate of secretion
determined by maximum cell size, although here
cell size distribution is ignored. The secretory rate
is inhibited if the amount of milk in the animal, M,
approaches the maximum capacity of the animal,
M, (kg) (Mepham, 1976). Thus, in the model, it is
assumed that

PM . kMOa(Mm_M)/(Mm_M'l'KR)’ (8)

where ks is a constant (kg/cell/day) and Kp is a
Michaelis—Menten constant (kg). M = M,—Kj,
gives the half-maximal response. In equation (8),
hormones do not play a direct role in regulating the
activity of the secreting cells. A large amount of
milk in the animal M directly inhibits milk secre-
tion in equation (8), but it should be noted that
these large amounts also increase the rate of loss
of secretory cells, reducing the number of secretory
cells (equation 7) and hence milk secretion. Any
further reduction, for instance due to the animal
becoming pregnant during lactation, is not
included. -

The present model allows only a very simple
representation of the process of milk ejection and
removal. Let Ry, (kg/day) be the rate of removal of
milk from the animal. A milking function m(t)
(kg/day) is defined as the potential rate of removal
of milk at time ¢ when quantity of milk is not
limiting ; the function m(t) is technically known as
a driving function; it is set by the environment,
that is the demands of the suckling calf or of the
machine in the milking parlour. If milk in the
animal is not limiting, then R,, = m(t). However,
as the amount of milk in the cow decreases, the
actual rate of removal R,, must fall increasingly
below the demand function m(t). It is assumed that
the relation between R, and m(t) is given by

M
By = (m) m(¢), (9)

where K, is a constant (kg).
A calf removes increasing amounts of milk
during the first week or two, and thereafter, its
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appetite and the cow’s milk production are

-generally in balance (Roy, 1980). It feeds usually

between six and ten times a day, taking small
amounts. In the model, it is assumed that a
continuous low rate is a reasonable approximation
for removal of milk by a calf, with a milking
function m, given by

My = Ty

(10)

where r, (kg/day) is & constant.

The milking function for machine milking,
m,,(t), is approximated by a pulse of constant
height lasting for several minutes, possibly
repeated two or three times a day. t* is defined as
the decimal part of the time variable ¢, by

t* = decimal part (¢). (11)
The pulse function II is defined by
1 for s < t* < #y; (12)

TI(*; 8, t) =
= 0 otherwise.

With two milking periods a day, the machine
milking function m,,(¢) is given by

My (8) = Pu[TIE%; 0y, )+ II(E%; 45, L), (13)

where ¢, and £, denote the beginning and end of the
first milking period, and £, and #, those of the
second. For example, if the animal is milked at
06.00 and 18.00 h for periods of 0-01 day (about
15 min), t, = 0-25 day, ¢, = 0-26 day,; = 0-75 day
and ¢, = 0-76 day. 7,, is a constant (kg/day).

The rate of change of the variable M is given by
combining equations (8) and (9), to give

aM M,—M
O P By = by O, B
R A v v o
AL 5. (14
o) O (19

Awveraged amount of milk in animal, M

Although the amount of milk in the animal M
appears in equation (8), affecting directly and
immediately the rate of secretion of milk, it is the
length of time that M has a high value that will
have an effect on the rate of loss of secretory cells
(Mepham, 1976). Indeed in equation (6) for the loss
rate of these cells, the variable M is introduced as &
quantity derived from M by averaging, which
introduces some delay. M(t) is defined as an
average with an exponential weighting factor, to
give

¢
M) = k,f M(r) e~Frit=7) g, (15)
—©
where k, is a constant (per day) and 7 is a dummy
time variable of integration. This equation pro-
duces the result that M(f) is approximately the

——
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A model of the mammary gland

average of the M(2) values over a time interval of
1/k, days.

Computationally, it is more convenient to use
differential equation than an integral equation. It
can be shown that equation (15) is equivalent to

am

—r = k(M)

. (16)

Substrate, S

Since the supply of substrate is assumed not to
be limiting, this implies that the substrate concen-
tration § is maintained at a constant or high value.
The variable S then no longer appears in the model.
In Fig. 1, dotted lines are shown connecting S to
the cell division rate (equation 4) and the rate of
gecretion of milk (equation 8). This is to indicate
that the substrate concentration & might reason-
ably be expected to influence these two processes;
in & model where the nutritional inputs are
limiting or are variable, it may be important to
write the substrate concentration S explicitly into
equations (4) and (8).

Differential equativny

In this section the mathematical definition of the
model is summarized. The four significant state
veriables are H, C,, M and M (8 and C, are
constant). From equations (1) and (2)

Cfi—lj = —kygH and H = Hye*H!, (17a)
From equation (7)
do, _ H )
E = Ym KH+H v
(M /3, ]}
. % —_— 1} (. (17}
{s+ we | Tr e || & (79

From equation (14)

(MM
a — "M\, — MRy,

M
— (w) m(ﬂ}. (176)

From equation (16)
aM

E‘ = kT(M—M).

(174d)
To complete the numerical definition of the
model, four initial values (at time ¢ = 0) of H, C,,
M and M are required. The 13 parameters, kg,
%, KH’ 014’ ks’ ksM! Mh, q, k‘w, Mm, KR: K“f and ;C,.
must be specified. In addition the milking funetion
m(t) must be defined, either with equation (10) for

& suckling calf
mit) = r,, (18a)
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which involves one extra parameter r,, or with
equation” (13) for machine milking with say two
milking periods per day

M) = rulIL(E*; by, ) + TI(8%; £, 8,)],  (18b)
which involves five extra parameters 7, f;, t,,
¢y and &, ¢* and the pulse function IT are defined in

-equations (11) and (12):

t* = decimal part (2), (18¢)

and

I(#*; 8, 8) = Lfort, < t* < t,;  (184)

0 otherwise.
Integration of equations (17) gives the time

course of the lactation, with the rate of removal of
milk from the animal being given by equation (9)

M
By (t) = (m) m(t),

and the total milk yield Y (kg) over the lactation
of length t;, (days) is

(19a)

i
Y—f R (2) dt. (190)
0

NUMERICAL ASSUMPTIONS

Three criteria are applied in assigning values to
the quantities in the model. First, the predictions
of the model about the time course of lactation
must approximate to reality; although the model
in Fig. 1 has a mechanistic structure, some of the
parameter values are used empirically. Secondly,
biological realism should not be violated ; although
Fig. 1 does not pretend to represent reality at the
bioshomical and physiologicul levels, it contains an
overview of certain assumed principal processes,
which should agree reasonably with expectation.
Thirdly, convenient numerical magnitudes can
make computation easier and reduce the prob-
ability of error; for instance, Lo assume the
hormone concentration is about unity and the
number of cells is in the range 1-1000 simplifies
matters, although biologically reasonable values
would be about 10~% and 1012 respectively.

Initial values
These are assigned the values

H(t = 0) = 1 kg/m? (arbitrary scale), (20a)
Ci(t = 0) = 0cells (arbitrary scale), (208)
Mt = 0) = 0kg, (20¢)
and M@ = 0) = 0kg. (204)

This choice of initial values sets the milk output at
the beginning of lactation to zero, which is not
strietly aceurate for a dairy cow, but is a con-
venient starting point for a simulation of lactation.
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Hormone decay rate, kg
This is set to
kg = 0-01 per day, (21)

which corresponds to a half-life of about 70 days.

Number of cells and division rate, C,, V,, and Ky

The number of undifferentiated cells is set to a
convenient but arbitrary number with

C, = 1000 cells.

The maximum cell division rate paremeter v, of
equation (4) is also of arbitrary magnitude and is
given the value

(22a)

v,, = 1 division/cell/day. (22b)

The parameter Kz of equation (5) determines for
how long, as the hormone concentration H falls,
the production of secretory cells is maintained at
its maximum rate. Using the same scale as in
equation (20a), it is assumed that

Ey = 0-2 kg/m®. (22¢)

Cell degradation, k&, kpp, My, q and k&,

The first four parameters appear directly in
equation (8). k, determines how quickly the number
of cells decreases and a value of

k, = 0-1 per day, (23a)

is used. Parameters kb, M, g and k. determine
how rapidly milk production capacity declines in
an animal that is not milked, or is dried off; this is
an irreversible process as formulated in tho model.
These parameters are assigned the values

kg = 0-2 per day, (23b)

M, = 27 kg, (23¢)

q = 10, (284)

and k, = 0-048 per day. (23¢)

Note that k, affects cell degradation in equation (6)
via equation (16) and M ; a value of 0-048 per day
approximately averages milk amount M over a
21-day period to give M.

Milk secretion and removal, kyr, M, and Ky,

The three parameters of equation (14) are crucial
to the milk yields predicted. &y and C, appear as a
product, and the numerical size of C,is fixed by the
choices for C, and v,, in equations (22a) and (22b).
C, will be of order 10® cells, and therefore the
values

kg = 0-005 and 0-001 kg/cell/day (24a)
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are chosen. Capacity M, is physically determined,
and is taken to be -
M, = 30Lg. (24b)

Also K, can be estimated from milking charac-
teristics; the values

K, =50 and 150kg (240)

are agssumed.

Milking function, m(t)

It is of interest to calculate milk secretion under
conditions where milk retention in the animal is not
a factor depressing yield ; for this purpose one takes
a high constant value for tho milking function,
namely

r, = 40 kg/day, (25a)

for use in equation (18a). A more realistic value for
suckling by a calf is (Baker, Barker & Le Du,
1982)

r, = 12 kg/day. (26b)
For machine milking it is assumed that
r,, = 4000 kg/day, (25¢)

which means that in 7-2min (0-005 day) the
machine is capable of removing 20 kg.
For an animal milked twice & day
t, = 0250, ¢, = 0-255 (06.00h);

: 25d
t, = 0750, t, = 0-755 (18.00 h).} (254)

For an animal milked three times a day
t, = 0-25, t, = 0:255 (06.00 h);

0-588 (14.00 h);

0-921 (22.00 h).

ty
I

0-583, ¢,
0918, ¢,

(25¢)
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Table 2. Initiol and parameter values .
for fitted curve Integration method
Using the values assigned above, equations (17)

Initial values were integrated using Euler’s method with a time

C, 520-0 Secretory cells step At = 0-1 day and 0-001 day for continuous
H 1-0 kg hormone /m* end pulsed demand functions respectively. The
1}% gg lﬁg mlji problem was programmed in the simulation
) g m ) language csMP.
Y 00 kg milk guag
Parameters RESULTS
% 1003 5 Enilf;zenh;te;i colls Fitting the predicted lactation curve
H g g one/mi .
Kur 443 kg milk Lio experimental data
ky 0-0102 per day This was carried out to see how satisfactory a fit
kar 0:00506 kg milk/cell/day could be obtained between model and experiment,
Kpg 3:0 kg milk and to compare parameter values adjusted to give
k, 0-048  per day best fit with those assigned in the last seetion. The
7’;, g; per ga.y data were taken from experiments in which Friegian
vl ) per cay cows with expected peak yields of 30 kg were fed &
M, 270 kg milk ' A ] :
M 30-0 kg milk maintenance allowance according to live weight
q m 10 plus two types of milk production allowance
Vi 1-0 Divisions/cell/day (Johnson, 1983). The animals lost little or no weight
T 45-0 kg milk/day in early lactation, and it was deduced that they
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Fig. 4. Time courses of the milk in the animal, M, the average milk in the animal, M, the number of
secretory cells, C; and the milk yield per day, when the demand rate is continuous and set at 40 kg/day,
shown by solid line ( ) and 12 kg/day, shown by broken line (- —- -). The milk secretion rate of
secretory cells, by = 0-005 kg /day.
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Fig. 5. Time courses of the mill in the animal, M, the average mill in the animal, M, the number of
secretory cells, €, and the milk yield per day, when the demand rate is continuous and set at 40 kg/dey,
shown by solid line (——) and 12 kg/day, shown by broken line (———~=). The milk secretion rate of

gsecretory cells, kyr = 0-001 kg/day.

were ¢lose to their potential milk production. There
was no significant difference between the means of
the lactations of the two treatments, and the
averages of the means for each of the 44 weeks of
lactation were used as experimental data to which
the model was fitted (Fig. 3). The parameter values
were varied so that the sum of the squared log
residuals from each observation time (RSS) were
minimized using the modification to csme of R. A.
Lainson, D.G.Sweeney and J.H. M. Thornley
(unpublished) described in the paper by Lainson &
Thornley (1982). When the milk removal funetion r,
was set at 40 kg/day, the best fit to the 44 points
obtained had a residual sum of squares (RSS) of
0-048 but the peaks of the observed values and the
prediction were distinct. The prediction shown in
Fig. 3 was obtained when r, was set at 45 kg/day.
This gave coincident peaks but RSS = 0-092.
However, 709 of this was accounted for by the
residual at the first observation peint. The para-
meter values of the fitted curve are listed in

Table 2. It will be noticed that only the parameter
KE,, and the initial value of C,, are very different
from the previously assigned values.

Cunbinuous demand funotions

With a demend function of 40 kg/day, the pre-
dicted lactation curve is very similar to that found
in mueh experimental work (Fig. 4). With a
demand function of 12 kg/day, the lactation curve
isalmost flat throughout the lactation. Although the
two lactation curves are quite different, in each
case the cells multiply and then decrease in number.
For the low demand funetion, milk in the animal M
is higher, cell death rate is greater, and the rate of
milk produetion per cell is much reduced. Once the
secretory cells have multiplied to the point where
the milkk secretion rate, k,,C, is equal to the
demand rate, m(t), then the regulatory terms in
equation (17¢) come into play, and the lactation
curve follows the demand function. When the
demand function is equal to or greater than the

—
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Fig. 6. Time courses of the milk in the animal, M, the average milk in the animel, M, the number of
secretory cells, C, and the milk yield per day, when the demand rate is pulsed twice a day shown as solid

line (
removal, Ky = 5-0.

) and three times a day shown as broken line (- -

— --). The Michaelis-Menten parameter of milk

Table 3. Comparison of predictions of milking two and three times a day
with experimental data

Poole (1981)

Number of milking periods/day 2

Total lactation yields (305 days, kg) 5259

9/, Increase of 3 times a day milking 12
Average daily milk yield in first 20 weeks (kg) ’ 21-4

Model predictions
[ 4 —A R
Ky = 50 Ky = 150
3 2 3 2 3
5885 6650 6920 5770 6650
— S - "
+ 15
L) i - — f_—d\-———-—-|
24-9 28-1 29-8 22-8 28-2

maximum secretion rate of the cow, then the growth
and decline in the number of secretory cells dictate
the shape of the lactation curve. The contrasting
lactation curves in Fig. 4 may be regarded as
illustrating the differences between machine

milking, which gives a supply limited lactation
with & well-defined maximum, and a suckling calf,

which gives a demand-limited lactation that is
relatively flat.

When the lower value of k,, is used (equations 8
and 24a), the lactation curve reflects the growth
and decline of secretory cells even with the demand
function of 12 kg/day (Fig. 5). The numbers of
secretory cells and lactation curves for both demand
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Fig. 7. Time courses of milk yield per day when demand rate is pulsed twice a day shown as solid line

(

) and three times a day shown as broken line (—«—-— ) and the ratio between values of the para-

meters of cell milk seeretion, &y, and milk removal r,, is varied. (a) 7, = 2000 kg/day, ky, = 0-005 kg/
cell/day; (b) r,, = 4000 kg/day, ky, = 0-005 kg/cell/day; and (¢) vy = 4000 kg/day, ky = 0-01 kg/
cell/day. The Michaelis-Menten parameter of milk removal, Kpr = 15-0.

levels have very similar time courses, the difference
being too small to show on the graph. This demon-
strates that when the demand function is increased
to values well above the maximum secretion rate
of the cow, the secretion rate of the cells tends
towards its maximum asymptotically, thereby
producing a maximum lactation curve for these
parameter values.

Pulsed demand functions

If a demand of 4000 kg/day is applied twice a
day for 0-005 day (7-2 min), this is equivalent to a
total daily demand of 40 kg/day. With a given
daily demand of say 40 kg/day, similar amounts of
milk can be removed whether the demand is
applied continuously or in pulses, although in the
latter cage, milk resides in the animal for longer.
However, whether this larger amount of residual
milk will depress milk secretion (equation 8), or
increase secretory cell death rate (equation 6),

depends upon the parameter values used. With the
present parameter values, the pulsed and con-
tinuous demand functions give very similar results
(Figs 4 and 6).

‘When the cow is milked three times a day, the
maximum number of cells and peak milk yield
occur at the same time in lactation as with twice-a-
day milking (Fig. 6). Although, in the latter case,
there is more milk residing in the animal for longer,
the amount is insufficient to affect cell death rate
and therefore the eurve of the number of cells
appreciably. However, there is a 10 %, difference in
peak yields and a difference of 49, in total milk
yield, 6920 and 6650 kg for milking three and two
times a day respectively.

When the milk removal parameter X, of
equation (9) is increased from 5 to 15 kg (equation
24¢), equation (9) becomes more linear in M (the
milk in the animal); this reduces milk secretion and
increases the difference between two- and three-

e i, e

e
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jimes-a-day milking. These predictions may be
compared with experimental data (Poole, 1981)
concerning cows that were milked gither two or
three times a day for the first 20 weeks and twice a
day for the rest of the lactation (Table 3). In this
experiment, the animals were fed at a roughly
constant level with a complete diet. In Table 3, it
can be seen that the model is able to simulate the
observed differences.

Tt is interesting to compare two- and three-
times-a-day milking for different values of the
ratio kyp/7m; Ky and 7o, are the milk secretion and
removal constants. Figure 7(a) and (¢) shows that
if the demand rates of milking two and three times
a day are easily met by the milk secretion rate
(high k. /r,), then there is an appreciable dif-
forence in the daily yields. If the k,./r,, ratio is
lowered (Fig. 7b), the differences become smaller,
and decrease away from the lactation peak.

DISCUSSION

The model presented here incorporates some of
what is known about the physiology of the milk
gecretion processes 1n the mammary gland inbo
a single quantitative scheme, which predicts,
amongst other things, the time course of milk
production. The problem has been parameterized
in a way that allows a variety of lactation curves to
be produced, with a single maximum which may be
quite pronounced or hardly evident. Some of the
parameters (for instance ky, k, and ky) appear
likely to be genetic characters of the animal which
might be manipulated by breeding, whereas others
relate to the demand funetion and are determined
by management. The model permits the interaction
of these parameter sets to be exsmined, which may
lead to a greater understanding and control of milk
production.
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The model can predict a range of experimental
data. Some situations have not been examined, but
fall within the scope of the present formulation.
For instance, a suckling calf would present a
varying demand function to the mother animal,
which rises in the first 2 weeks and then falls as the
calf begins to eat solid food. However, some
problems could not be encompassed by the model
without extension or alteration. For example, it has
been suggested that the greater decreasing slope in
the lactation curve of a machine-milked cow com-
pared with a suckled cow, may be caused by a
greater death rate of the secretory cells through
overwork (Mepham, 1976), This is an alternative
hypothesis to that considered in this model. To
relax the assumption that the nutritional status of
the mammary gland is constant (in Fig. 1, sub-
strate compartment S is constant), and possibly
examine lactation in relation to partitioning of
energy and nitrogen in the rest of the animal, would
require & major and difficult development of the
model. The milking demand function represents the
removal of milk from a gland of large capacity
offering no resistance; this may not be a realistic
representation of o milking machine or a siekling
calf.

In conclusion, the model provides & simple semi-
mechanistic representation of lactation, which
might give a useful approach to more complex and
more difficult problems.

The suthors are indebted to J.D.Oldham,
C. Thomas and J. W.G. Parker for suggestions,
comments and criticism. The Grassland Research
Institute is financed through the Agricultural
Research Council. The work is in part com-
missioned by the Ministry of Agriculture, Fisheries
and Food.
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