Nutritional strategies related to sustainability and efficiency of the U.S. beef industry

C. R. Krehbiel and S. C. Fernando Department of Animal Science, University of Nebraska - Lincoln

Producing Food with Animals: Sustainability, Efficiency, and Security in the U.S.

> NANP Summit, April 10, 2019 Washington, DC

U.S. Beef Industry

- Traditionally segmented
 - Cow-calf (purebred and commercial)
 - Stocker/backgrounding
 - Finishing phases
- Evolving into a total production system
 - Livestock and environmental stewardship
 - Economic sustainability
 - Social responsibility

U.S. Beef Industry Consumer Retailer Packing Industry Feedlot sector Backgrounding sector Commercial cow/calf Seedstock

U.S. Land: 0.785 billion hectares

- 23.3% is water or federal land
- Non-federal land: 34.7% rangeland, 34.7% forest land, and 30.6% cropland
- Over 4.5 million metric tons of crop residues annually
- 37 kg of byproducts available for livestock for every 100 kg of plants grown for human food

Advantages of Ruminants

- About 35% of the U.S. land surface is rangeland.
- Ruminants can utilize the largest carbohydrate (CHO) source in the world and produce food and other products for man.
- Microbial digestion maintains the carbon cycle. Plants fix CO₂ and release O₂ (85 billions tons of CO₂ released each year from microbial fermentation).

Rumen Ecosystem

- Catabolic processes are collectively thought of as "fermentation".
 - "Fermentation is the consequence of life without air" (Louis Pasteur).
 - VFA are fully reduced, energy dense compounds.
 Microbes grow and end products are absorbed.
- Anabolic processes are critical:
 - Supply of protein of relatively high biological value, from protein and NPN sources.
 - To meet the B-vitamin requirements of the host.

Advantages of Pregastric Fermentation

• More effective use of fermentation end-products including:

- Volatile fatty acids, microbial protein, B vitamins

- Ability to detoxify some poisonous compounds

 Oxalates, cyanide, alkaloids
- Undigested residues (OM) returned to the soil
- In wild animals, it allows animals to "eat and run"

Disadvantages of Pregastric Fermentation

- Inefficiencies in fermentation
 - Energy

• Loss	Amount (% of total caloric value)
Methane	5-8
Heat of fermentation	5-6

- Relative efficiency is dependent on the diet NDF.
- Protein
 - Some ammonia resulting from microbial degradation will be absorbed and excreted
 - 20% of the nitrogen in microbes is in the form of nucleic acids
- Ruminants are susceptible to acidosis and ketosis
- Ruminants are susceptible to toxins produced by rumen microbes

– Nitrates	Nitrites
– Urea	Ammonia
 Nonstructural carbohydrates 	Lactic acid
 Tryptophan 	3-methyl indole
 Isoflavonoid estrogens 	Estrogen

Forage use in Beef Production Systems

	Metric Tons
Forage for Cows/Replacements	640
Forage for Calf Finishing	18
Grain for Calf Finishing	140
Total forage	658
Total feed	798

Beef Production is > 80% forage

Feed Consumption in Beef Production Systems

	<u>kg DM/kg CW</u>
 Grazed forage 	13.2
 Harvested forage 	5.1
 Grain concentrate 	2.6
Other feed	1.5
 Total feed 	22.3

Beef Production is > 80% forage

(Rotz et al., 2019)

Humans vs. Ruminants

We're only 10% human

Human microbiota to ruminants – polysaccharide utilization

- Bacteroidetes Bacteroides thetaiotaomicron (S) Bacteroides ovatus (X,S) Bacteroides cellulosilyticus (C) Bacteroides sp. nov. (X)
- Firmicutes
 Roseburia intestinalis (X,S)
 Roseburia inulinivorans (I,S)
 Ruminococcus bromii (S)
 Ruminococcus sp. nov. (C,X)
 Eubacterium rectale (S)
- Actinobacteria
 Bifidobacterium adolescentis (5)

Large

intestine

- 70% of energy from microbial breakdown
- Mutualism
- Dietary polysaccharides that reach the large intestine impact microbial ecology
- "Diet influences microbial community"

Nature Reviews Microbiology 6, 121-131 (February 2008) |

Stomach

intestine

Rectum

Small

Pyruvate Metabolism in the Gut

Courtesy of Dr. Nagaraja (Kansas State University)

- Polymers are converted to monomers and are phosphorylated
 - Enter different pathways
- Pathways are interconnected and make intermediates that feed back into glycolysis
- Glycolysis is key in microbial metabolism to produce pyruvate
- Pyruvate is used for VFA production
- VFA produced are metabolized by the host for energy
 - Acetate and butyrate produce H₂
 - Propionate, lactate and ethanol use H₂

Methane and VFAs

Moss et al. Annales De Zootechnie, 49: 231-253

Courtesy of Dr. Nagaraja et al. (Kansas State University)

Inter Species Hydrogen Transfer

Courtesy of Dr. Nagaraja et al. (Kansas State University)

Reproduced from http://www.shmoop.com/cell-respiration/glycolysis.html

Hydrogen sinks in the rumen

Morgavi DP, et al. Animal. 2010 Jul;4(7):1024-36.

Research Question

Beef Production is > 80% forage

Can dietary intervention be used to reduce methane in ruminants?

Growing Study

- 120 steers, initial BW 300 ± 25 kg
- 84 d growing study
- Forage quality:
 - High (alfalfa/sorghum silage)
 - Low (cornstalks)
- Monensin: +/-
- MDGS type and level:
 - Normal vs. De-oiled
 - 0, 20, 40%

<image>

S.C. Fernando et al.

Emissions: Forage x Mon.

	40% De-Oiled MDGS				_			
		HQ	LQ			P-value		
Monensin	+	-	+	-	SEM	Forage	Mon.	Int.
CH₄:CO₂	0.101 ^a	0.101 ^a	0.083 ^b	0.101 ^a	0.003	<0.01	<0.01	<0.01

Pesta et al. Unpublished data

Structuring – Forage Quality Bacteria

Knoell et al. Unpublished data

Structuring – Forage Quality Archaea

Common diet

Metagenomic Analysis to Identify Microbial Pathways

Principle Component Analyses for all enzymes based on metagenomic shotgun analyses

> Anthony-Babu et al. Unpublished data

Metabolic differences in HQ and LQ forage diets

Anthony-Babu et al. Unpublished data

Metabolic differences in HQ and LQ forage diets

Anthony-Babu et al. Unpublished data

- Production of methane within the rumen plays an important role in efficient substrate utilization
- Decreasing methanogenesis needs to be coupled with efficient rumen function
 - Re-cycling NADH using alternative pathways to methanogenesis
- Dietary intervention is a viable strategy to reduce enteric fermentation by utilizing substrates that select for microbes that compete with methanogens for H₂
- Whole rumen ecosystem needs to be considered

Beef Systems Research

• Evaluating how a change in one segment impacts production and profit in multiple segments

Seedstock producer Commercial cow/calf Backgrounding sector Feedlot sector Packing industry

Consumer

Retailer

Available corn residue 1950-2014

Year

Assumes forage is 80% of corn yield, DM basis

Beef Cows

Future Direction

 Should we encourage farmers to integrate cows onto existing farmland?

• Why? Pasture is limited and total production per acre increases.

Technologies

Method	% Improvement in FE
Implants	5 to 15%
lonophores	4 to 8%
DFM	2 to 2.5%
β-adrenergic agonists	10 to 30%

Opportunities

- "Wide variation in environmental footprints found among individual production systems indicates that reductions can be made to improve overall sustainability." (Rotz et al., 2019)
 - Will require improvements on individual operations
 - Decrease days on feed
 - Optimize use of fertilizer
 - More efficient use of solar and wind power for fencing and watering
 - Efficient use of water

Opportunities

- Increased understanding of GxExMxS
- Increased understanding of Genotype to Phenotype
- Emphasis on the use of precision management tools
- Place value of information flowing across segments of the industry
- Animal health and well being
- Consumer confidence and trust (social and product)

Conclusions

- Beef cattle rely on forages for production
- Diversity of microorganisms in the rumen allows for altering nutritional strategies to improve efficiency
 - Improve efficiency of forage utilization
- Byproducts and crop residue use important for competitive advantage
- Variation in environmental footprints indicate improvements should be individualized
- There is need for greater understanding of GxExMxS

From Pasture...

1

...To Plate

Beef cattle are well positioned

Turn forage into high quality protein

