



"**Complex** interconnections *pose challenges for design of effective policy and scientific study* using many standard tools."

Ross and Dube (2012) "A systems science perspective and transdisciplinary models for food and nutrition security." PNAS.

"To date, most studies that address changes within the food system have taken a *relatively narrow approach with limited consideration of the system's complexity*. However, such approaches can often miss important interconnections and may not capture the full set of impacts flowing from any particular change in the food system."

Nesheim et al. (2015). *A Framework for Assessing Effects of the Food System*. National Academies Press.

3

4

## <text><text><text>

























| Field                                | Stocks                                        | Flows                                            |
|--------------------------------------|-----------------------------------------------|--------------------------------------------------|
| Mathematics, physics and engineering | Integrals, states,<br>state variables, stocks | Derivatives,<br>rates of change, flows           |
| Chemistry                            | Reactants and reaction products               | Reaction rates                                   |
| Manufacturing                        | Buffers, inventories                          | Throughput                                       |
| Economics                            | Levels                                        | Rates                                            |
| Accounting                           | Stocks,<br>balance sheet items                | Flows, cash flow or income statement items       |
| Biology, physiology                  | Compartments                                  | Diffusion rates, flows                           |
| Medicine, epidemiology               | Prevalence,<br>reservoirs                     | Incidence, infection,<br>morbidity and mortality |



19



- Applications to Animal Agriculture
  - At different scales
  - Different disciplinary focus
- Rumen fill dynamics (CNCPS)
- Brazil dairy sector

















- 1,653 lb (750 kg) cow producing 90 lb (41 kg) milk
- Consuming 54 lb (24.5 kg) DMI
  - 32% aNDFom
- 17.28 lb aNDFom intake (7.84 kg)
  - 7,840 g aNDFom intake
  - 1% body weight
  - 2017 Agronomic factors

| Animal Inputs              | Value |
|----------------------------|-------|
| Inputted milk (lb)         | 90    |
| Energy corrected milk (lb) | 94    |
| Milk Fat %                 | 3.7   |
| Milk True Protein %        | 3.1   |
| Body weight (lb)           | 1,653 |
| BCS                        | 3.0   |
| Days since calving         | 110   |
| Age (months)               | 39    |

### 27

### Feed Assumptions for Scenario Analysis

| Chemical composition        | Low aNDFom<br>digestibility | Base | High aNDFom<br>digestibility |
|-----------------------------|-----------------------------|------|------------------------------|
| CP (% DM)                   | 7.0                         | 7.5  | 8.1                          |
| aNDFom (% DM)               | 37.7                        | 37.3 | 37.8                         |
| Starch (% DM)               | 36.0                        | 37.1 | 32.1                         |
| uNDFom30 (% aNDFom)         | 47.8                        | 45.1 | 41.4                         |
| uNDFom120 (% aNDFom)        | 38.6                        | 34.7 | 29.8                         |
| uNDFom240 (% aNDFom)        | 36.7                        | 32.6 | 27.7                         |
| Fast pool aNDFom (% aNDFom) | 49.5                        | 51.8 | 55.4                         |
| Slow pool aNDFom (% aNDFom) | 13.0                        | 15.0 | 16.0                         |
| uNDFom pool (% aNDFom)      | 36.7                        | 32.6 | 27.7                         |
| Fast kd (%/h)               | 12.4                        | 12.1 | 11.6                         |
| Slow kd (%/h)               | 1.8                         | 1.8  | 1.8                          |
| Integrated kd (%/h)         | 6.3                         | 5.9  | 5.9                          |

























## SD in Graduate Training?

- As a "Discipline Plus" component
- <u>Example:</u> Cornell Food Systems and Poverty Reduction IGERT 2010-2014
- Integrating systems modeling course and interdisciplinary field working groups



41

# <section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



