
Model Evaluation

Ermias Kebreab University of California, Davis


Pittsburgh, June 25, 2017

Modeling Process

Introduction

- Statistical measures of model performance commonly compare predictions with observations judged to be reliable
- Model evaluation indicates the level of accuracy and precision of model predictions
- Evaluates the credibility or reliability of a model by comparing it to real-world observations
- 'Validation' has been used to mean 'Evaluation' but no model can be validated completely because all of the infinite possibilities cannot be evaluated.

Model Evaluation Methods

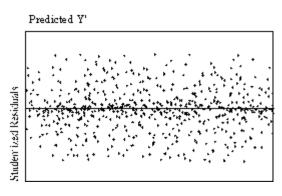
There are three types of quantitative statistical model evaluation methods

- Standard Regression Statistics (SRS)
 - Determines strength of linear relationship.
 E.g., Linear regression technique, analysis of residuals
- Error Index quantifies deviation in obs. units
 - E.g., Mean square error of prediction (MSPE)
- Dimensionless relative model evaluation
 - E.g. Concordance correlation coefficient (CCC), Nash-Sutcliffe Index (NSE)

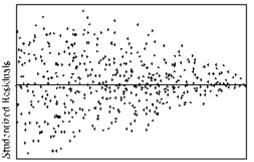
SRS – Linear Regression

Linear regression:

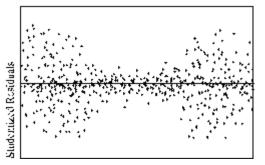
- Model predicted values are plotted on the Xaxis
- A slope of 1 and intercept of 0 indicate perfect agreement
- Assumption (1) all error variance is contained in predicted values and observed data are error free
 - Measured data is rarely, if at all, error free so care should be taken with this method


SRS - Linear Regression

Assumptions (continued): (a) the Y-axis values have to be independent, random and homocedastic and (b) residuals are independent and identically distributed.


Homoscedasticity

Heteroscedasticity

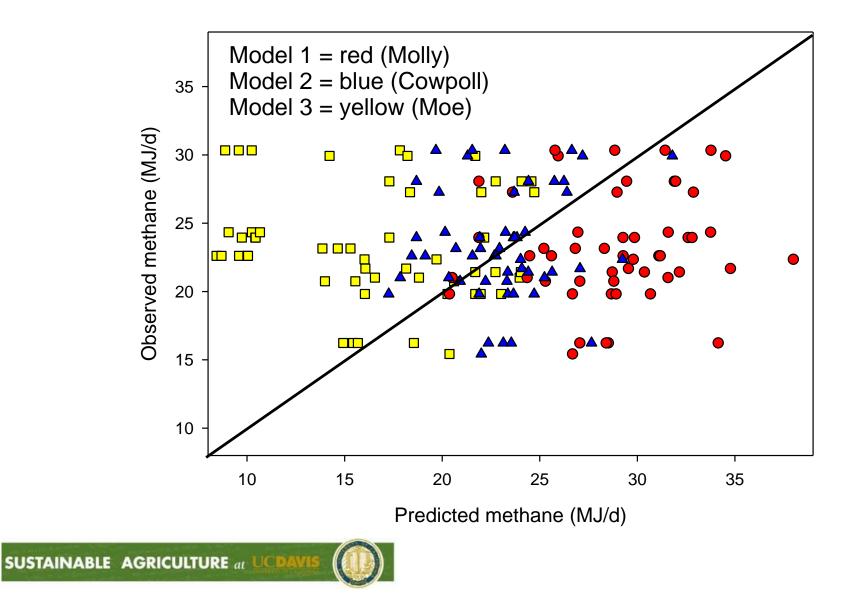

Heteroscedasticity

Predicted Y

SRS - Correlation

Pearson correlation coefficient (r) or coefficient of determination (R²):

- Describe the degree of collinearity
- If r=0 no linear relationship exists, r=1 or -1 perfect positive or negative relationship
- R² described the proportion of variance in measured data explained by model
- Problem Oversensitive to extreme values and insensitive to additive or proportional differences between predicted and observed values.


Linear Regression - Example

3) ÷	-				000000000	example.xlsx - N	licrosoft Excel	-								
Home Ins	sert Page Layout	Formulas Da	ta Review View	r Add-Ins Acrol	pat				_						10		0 - 5
Cut			= = = >-			· 🛃 🇾	Normal 2	Normal	Bad	Good	Neutral			P 🗊	Σ AutoSun	Zrunn	
ste 🛷 Format Pain						Conditional Format Formatting * as Table *	Calculation	Check Cell	Explanato	ory Followed Hy	<u>Hyperlink</u>	Ŧ	*	Delete Format	🖉 Clear 🔻	Sort & Find & Filter * Select *	
Clipboard E1	Fo Fo ▼ (∮x	nt 🕞	Alignm	ent 🕞	Number	Fa		2	Styles				1	Cells		Editing	
	A		В	C		D		E		F				G		н	
				Predict	ed												
Observed	l	Model 1		Model 2	N	1odel 3											
	19.8		20.4		17.3		16.0										
	21.0		20.5		17.9		16.6										
	28.1		21.9		18.7		17.3										
	24.0		21.9		18.7		17.3										
	27.3		23.6		19.8		18.4										
	21.0		24.4		20.3		18.8										
	19.8		26.7		21.9		20.3										
	15.4		26.7		22.0		20.4										
	20.8		27.1		22.2		20.6										
	19.8		28.7		23.4		21.7										
	21.4		28.7		23.4		21.7										
	19.8		28.9		23.7		22.0										
	27.3		29.0		23.7		22.0										
	24.0		29.3		23.8		22.2										
	21.4		30.4		24.4		22.7										
	28.1		29.5		24.4		22.7										
	19.8		30.7		24.7		23.0										
	21.0		31.6		25.2		24.0										
	21.4		32.2		25.6		24.0										
	28.1		31.9		25.8		24.1										
	28.1		32.0		26.2		24.6										
	27.3		32.9		26.4		24.7										
	23.2		25.2		20.7		13.9										
	20.8		25.3		20.9		14.0										
					20.5		14.0										
▶ ► original dat ly	ita MSE Residu	als / MSPE / Exan	nple B&T 🖉						1	< label{eq:starter}						······································	0% 🖨 🛛 🔍

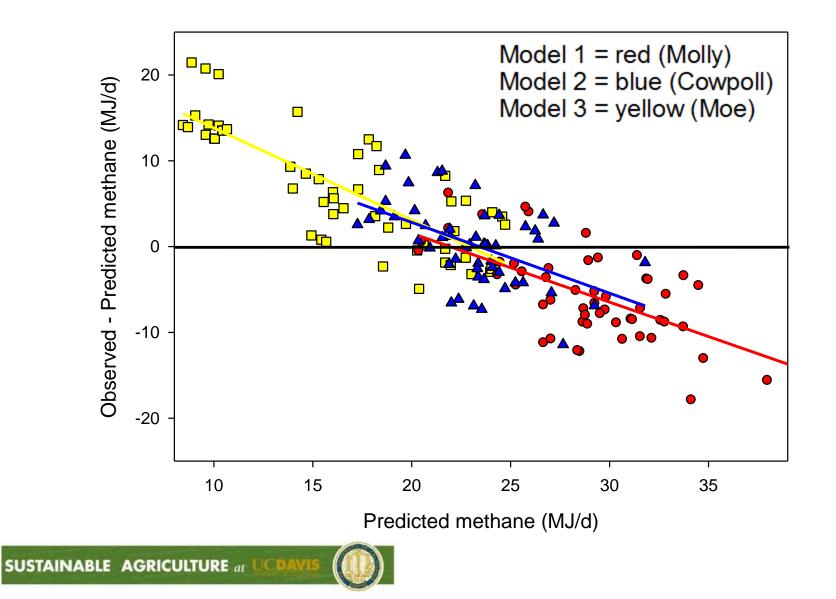
Kebreab et al. 2008 JAS

Linear Regression - Example

SRS - Analysis of Residuals

- The method involves regressing residuals (observed – predicted) against predicted or other model variables including model inputs, but not against observed
- Regressing residuals on observed values has been proved to be inadequate to properly identify biases with the simplest, most basic model (St Pierre, 2003)
- Residuals are not correlated with predictions and the slope of residuals regressed on predictions is zero if the model is unbiased

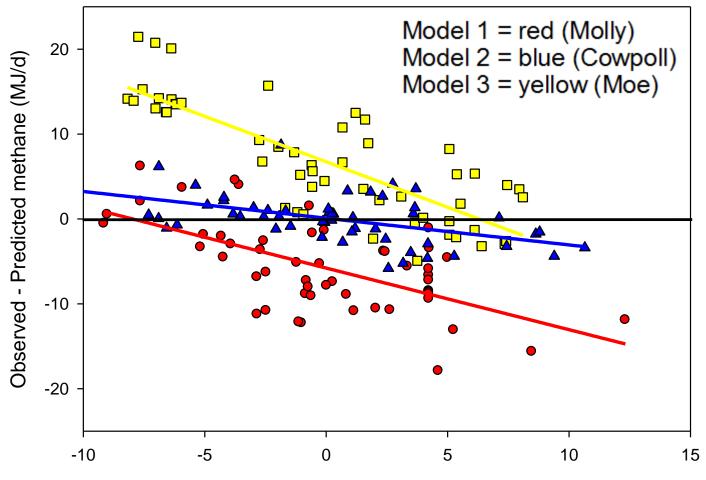
Analysis of Residuals - Data


) =			e	ample.xlsx - Mi	crosoft Excel	-						
✓ Home Inser ₩ Cut	rt Page Layout										Σ AutoSum * A	-9 4	0 - 0
Conv			General	<u> </u>	Vormal 2	Normal Bad	lanatory	Good Followed Hy	Neutral	rt Delete Format	■ Fill + ZŬ Sort &	Eind &	
			ment	Formatting * as Table *	actuation	Styles	unutory	Pollowed Hy	nyperink	 Cells	∠ Clear ▼ Filter * S Editing	select *	
	• (• f _x			*							5,(
A	\	В	С	D		E		F		G		н	
			Predicted				_						
Observed				odel 3									
	19.8	20.4			5.0								
	21.0	20.5			5.6								
	28.1	21.9			7.3								
	24.0	21.9			7.3								
	27.3	23.6			3.4								
	21.0	24.4	20.3	1	8.8								
	19.8	26.7	21.9	2	0.3								
	15.4	26.7	22.0	2	0.4								
	20.8	27.1	22.2	2	0.6								
	19.8	28.7	23.4	2	1.7								
	21.4	28.7	23.4	2	1.7								
	19.8	28.9	23.7	2	2.0								
	27.3	29.0	23.7	2	2.0								
	24.0	29.3	23.8	2	2.2								
	21.4	30.4	24.4	2	2.7								
	28.1	29.5	24.4	2	2.7								
	19.8	30.7	24.7	2	3.0								
	21.0	31.6	25.2	2	4.0								
	21.4	32.2	25.6	2	4.0								
	28.1	31.9	25.8	2	4.1								
	28.1	32.0	26.2	2	4.6								
	27.3	32.9	26.4	2	4.7								
	23.2	25.2	20.7	1	3.9								
	20.8	25.3		14	4.0								
		25 9			4 2								

Kebreab et al. 2008 JAS

Analysis of Residuals – Obs - Pred

	;	_					exampl	e.xlsx - Microsoft Excel							
Home Insert	Page Layout	Formulas Da	ata Review View	w Add-Ins Acro	bat								(-	a A 22	0 -
Cut		• 20 • A A	= = = >>-	Wrap Text	General		Norm		Good	Neutral	Calculation	🎦 👘 🚺	Σ Auto		
💞 Format Painter		nt 6			\$ ~ % • .00 .00	Formatting * as la	ble *	Cell Explanatory	. <u>Followed</u>	<u>d Hy</u> <u>Hyperlink</u>	Input	Insert Delete Fo	👻 🖉 Clea		
Clipboard 5	Fo fx	Model 1	Alignn	ient 👒	Number				Styles			Cells		Editing	
А			В	Ċ		D		E		F		G		Н	
				Predic	ted					Observed-Pre	edicted				
Observed		Model 1		Model 2	Mc	odel 3		Model 1		Model 2		Model 3			
	19.82		20.37		17.26		16.04		-0.55		2.56		3.78		
	21.02		20.51		17.85		16.55		0.51		3.17		4.47		
	28.07		21.88		18.68		17.29		6.19		9.39	-	LO.78		
	23.95		21.88		18.68		17.29		2.07		5.27		6.66		
	27.27		23.6		19.84		18.35		3.67		7.43		8.92		
	21.02		24.35		20.34		18.81		-3.33		0.68		2.21		
	19.82		26.67		21.89		20.27		-6.85		-2.07		-0.45		
	15.43		26.68		22		20.37		-11.25		-6.57		-4.94		
	20.75		27.05		22.22		20.61		-6.30		-1.47		0.14		
	19.82		28.67		23.36		21.69		-8.85		-3.54		-1.87		
	21.42		28.71		23.36		21.69		-7.29		-1.94		-0.27		
	19.82		28.91		23.65		21.97		-9.09		-3.83		-2.15		
	27.27		28.96		23.68		22		-1.69		3.59		5.27		
	23.95		29.26		23.83		22.15		-5.31		0.12		1.80		
	21.42		30.36		24.41		22.73		-8.94		-2.99		-1.31		
	28.07		29.45		24.42		22.74		-1.38		3.65		5.33		
	19.82		30.67		24.71		23.02		-10.85		-4.89		-3.20		
	21.02		31.57		25.24		23.97		-10.55		-4.22		-2.95		
	21.42		32.15		25.63		24.03		-10.73		-4.21		-2.61		
	28.07		31.89		25.75		24.07		-3.82		2.32		4.00		
	28.07		31.96		26.24		24.57		-3.89		1.83		3.50		
	27.27		32.87		26.39		24.72		-5.60		0.88		2.55		
	23.15		25.21		20.7		13.86		-2.06		2.45		9.29		
	20.75		25.29		20.92		13.99		-4.54		-0.17		6.76		
	29.73		25.23		20.52		14 23		3 99		8 63		15 70		
H Sheet1 Fee lestination and press	dlot 🖉 Dairy 📜 F								i i	4	iii			ım: -18.96 🔲 🔲 🛄 100% 🤆	


Analysis of Residuals - Graph

Analysis of Residuals – Centered Analysis

- Predicted values can be centered by subtracting the mean of all predicted values from each prediction
- This makes the slope and intercept estimates in the regression orthogonal and thus, independent (St Pierre, 2003)
- This allows for mean biases to be assessed using the intercepts of the regression equations, and the slopes to determine the presence of linear biases.

Analysis of Residuals - Centered

Predicted methane centered around the mean (MJ/d)

Analysis of Residuals - Equations

• Model 1

-5.78 (SE=0.56; P <0.001) – 0.73 (SE=0.13; P <0.001) (X-29.5) r² = 0.38

•Model 3 6.73 (SE=0.56; P <0.001) – 1.07 (SE=0.11; P <0.001) (X-16.6) r² = 0.65

Error Index

Mean Square Error of Prediction (MSPE) and root mean square error (RMSPE):

- Valuable because they indicate error in the units (or squared units) of the observed value
- In general RMSPE values less than half of the SD of observed values may be considered a good agreement
- Therefore, RMSPE can be standardized by dividing it by SD of observed values (RSR).
- RSR varies from optimum of 0 to large positive values. The lower RSR the better the model performance

Mean Square Error of Prediction

An assessment of the error of prediction can be made by calculation of the root mean square error (MSPE):

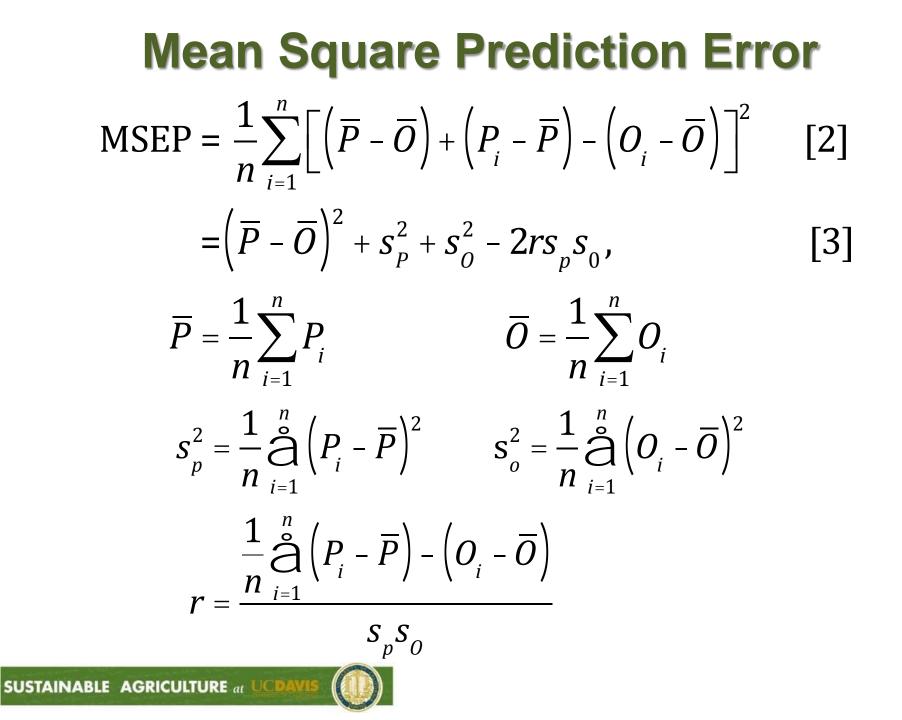
$$MSEP = \mathop{\text{a}}_{i=1}^{n} \left(P_i - O_i \right)^2 / n$$

where *n* is the number of runs and P_i and O_i are the predicted and observed values, respectively.

$$RSR = \frac{RMSEP}{STD_{obs}} = \frac{\sqrt{\sum_{i=1}^{n} (P_i - O_i)^2 / n}}{\sqrt{\sum_{i=0}^{n} (O_i - \overline{O})^2 / n}}$$

20

The MSPE can be decomposed into:


- error due to overall bias of prediction,
- error due to deviation of the regression slope from unity, and
- error due to the disturbance (random variation; Bibby and Toutenburg, 1977).

Root MSPE (RMSPE) which is in the same unit as observed value can be used as a measure of accuracy of prediction.

$$MSEP = \sum_{i=1}^{n} \left(P_i - O_i \right)^2 / n \qquad [1]$$
$$MSEP = \frac{1}{n} \sum_{i=1}^{n} \left[\left(\overline{P} - \overline{O} \right) + \left(P_i - \overline{P} \right) - \left(O_i - O \right) \right]^2 \qquad [2]$$

where P_i is the predicted value and O_i is the observed value. This may be written as:

$$MSEP = \left(\overline{P} - \overline{O}\right)^2 + \left(s_p - rs_O\right)^2 + \left(1 - r^2\right)s_O^2$$

The decomposition of MSEP has some convenient interpretations. The first term is zero when P = O i.e. when the average predicted value coincides with the average observed value.

Errors which lead to a positive value for this term may be called errors in central tendency (ECT) or mean bias.

$$MSEP = \left(\overline{P} - \overline{O}\right)^2 + \left(s_p - rs_O\right)^2 + \left(1 - r^2\right)s_O^2$$

- The second and the third term can be expressed as errors due to regression (ER) and errors due to disturbances (ED).
- The reason for this terminology is because the final term is the variation in O which is not accounted for by a least square regression of O and P – it is not the 'unexplained variance'. It represents the portion of MSEP which cannot be eliminated by linear corrections of the predictions.

The penultimate term can be written as follows:

$$s_p^2 \left(1 - \frac{rs_0}{s_p}\right)^2$$

which measures the deviation of the least squares regression coefficient (rS_O/S_P) from one, the value it would have been if the predictions were completely accurate.

Root MSPE - Example

Let's work with a simple example first and then calculate the MSEP for previous example (i.e. methane emission models):

i	Observed	Predicted
1	10	5
2	2	-2
3	-7	-2 -4
4	4	0
5	-3	1
6	6	4
7	4	7
8	-4	-2
9	-1	-2
10	3	2

Root MSPE - Example

i	Observed	Predicted	(obs - AveO)^2	(pred - AveP)^2	(Pred-Obs)^2
1	10	5	74.0	16.8	25
2	2	-2	0.4	8.4	16
3	-7	-4	70.6	24.0	9
4	4	0	6.8	0.8	16
5	-3	1	19.4	0.0	16
6	6	4	21.2	9.6	4
7	4	7	6.8	37.2	9
8	-4	-2	29.2	8.4	4
9	-1	-2	5.8	8.4	1
10	3	2	2.6	1.2	1
Sum	14	9	236.4	114.9	101
Average	1.4	0.9	23.64	11.49	10.1
SP	3.39			MSPE	10.1
SA	4.86			RMSPE	3.2
r	0.77				
				ECT	0.3
				ER	0.1
				ED	9.7
to the second	the state of the state of the				10.1

MSPE – Methane Example

Model 1 MSEP = 59.7 (RMSEP = 7.7 MJ/d; 26%) ECT = 33.5(56%), ER = 10.8, ED = 15.4 (26%)

• Model 2 MSEP = 21.4 (RMSEP = 4.6 MJ/d; 16%) ECT = 0.1 (0.5%), ER = 5.54, ED = 15.8 (74%)

• Model 3

MSEP = 90.5 (RMSEP = 9.5 MJ/d; 32%) ECT = 45.3 (50%), ER = 29.3, ED = 15.9 (18%)

$$MSEP = \sum_{i=1}^{n} (P_{i} - O_{i})^{2} / n$$
[1]

Problem: Squared differences magnify impact of outliers so Mean absolute error (MAE) can be used

$$MAE = \sum_{i=1}^{n} |P_i - O_i| / n$$

Dimensionless Evaluation Statistics

Index of agreement (d), Nash-Sutcliffe efficiency (NSE), Persistence model efficiency (PME), Prediction efficiency (Pe) and Concordance correlation coefficient or reproducibility index (CCC) are used to evaluate precision and accuracy of model predictions.

Accuracy measures how closely model-predicted values are to the true values. Model's ability to predict the right values

Precision measures how closely individual modelpredicted values are within each other.

Model's ability to predict similar values consistently

34

Concordance correlation coefficient

CCC can be represented as a product of two components:

• A correlation coefficient estimate that measures precision (*r*) (Range 0 to 1, where 1 = perfect fit)

• A bias correction factor (C_b) that indicates how far the regression line deviates from the line of unity (Range from 0 to 1 and 1 indicates that no deviation from the line of unity has occurred).

Final thoughts

- Several model evaluation tools are available.
 Some such as k-fold also available for internal model evaluation
- When writing a modelling paper provide at least one dimensionless statistic and one error index statistic with additional information such as SD of measured data.

Practical

- Objective: Write model evaluation tool in R. Calculate an error index (MSPE) and dimensionless (CCC) based evaluation
- A simple data containing observed and predicted values is provided as the file: MSPE for R.csv
- Use the data to calculate MSEP, and its decomposition to ECT, ER and ED. Express it as a percentage of the total MSPE
- Calculate the RMSPE and express it as a percentage of the obs. mean. Calculate RSR
- Calculate CCC– does the result of RMSPE (or RSR) agree with CCC?