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Outline

* Nutrition models are VERY diverse
 Combination of empirical, mechanistic, dynamic and static models
* Regression, linear and nonlinear mixed models, differential equations

* Today: Main approaches for estimating parameters in a variety of models

* Some mathematical description
 |dea is for you to understand the reasoning and challenges of different approaches

* One exercise/demonstration in the end
* Fit model with two approaches



Introduction

* Different types of models have been used for nutrition modeling
 Compartmental, regression, meta-analysis, nonlinear mixed models, .....

* One feature is common to almost all these models
* Parameters are needed to describe the system
* Quantify relationship between variables
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Introduction

e Simple example: linear regression Y. =S, + BX +&
* Y, is the response variable for the ith observation
N o * X;is the predictor variable in the jith observation
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Introduction

* In practice, parameter true values are unknown
* Estimators from a sample

* Parameters have to be optimal in some sense
* Least square estimators minimize squared errors
 Maximum likelihood estimators maximize the likelihood function



Least Squares Estimators




Least Square Estimators
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* The least squares estimators minimize the square errors: Q=2 [ Y.~ (5 + 5x) ]
i=1
e How do we get them???

* We can find points of minimum and maximum of a function using derivatives.

For example for f (x) = 160x — 16x?
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— f(x)
— df(x)/dx
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Set derivative to zero and “solve” for Xx:
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Least Squares Estimators
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Setting these partial derivatives to zero, we construct the normal equations

Zn:Yi =nb, + blzn: X

i=1 i=1

Zn:XiYi = bozn: X, + blzn: X?
i=1 i=1 i=1



Least Squares Estimators

* The least square estimators are the solutions to the normal equations

b =36 -R)( V) S5 -%)

b, =Y —bx

* The concept extends to multiple regression

2

Q= Y[V~ (o A+ By X))

* General form of the least squares estimators: b= (XTX)_leY



Least Squares Estimators

* Estimates of the uncertainty associated with these parameters

* Estimator of the error’s variance

2

MSE = n} . iZl:[Yi _(bo + b1Xi1 Tt bp—lxi,p—l)]

* Estimated variance-covariance matrix of the parameters

MSE (X"X)"



Nonlinear Models

* So far, we can estimate parameters in linear models

* Many phenomena in biology are nonlinear

* For example, reaction velocity vs. substrate concentration in an enzymatic reaction
* Before we start with nonlinear models, let’s clarify

Y. = o +¢& isanonlinear model
1+ 6,exp(6;x;)

Y. = B, + BX + B,x:+¢& s alinear model



Non|inear |\/|Qde|5 Michaelis-Menten Kinetics
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Nonlinear Regression
Y, =f(x.0)+¢

f is the nonlinear function describing the relationship between Y and X

— VmaxXi + e f 9 V
Kw +% = (Xi’ )_KM+X.

X

Michaelis-Menten example: Y, max

* Y, Iis the reaction rate for the ith observation
* X;Is the associated substrate concentration

T .
0 = (V. K, ) arethe parameters to be estimated

* g isthe error, E[g] =0, Var[g;] = 0% and independent
e i=1,..,n



Least Squares Estimators

* For the simple linear regression model, least squares minimize

* For the nonlinear regression, the idea is the same: minimize

0 :Z[Yi f(x )]2



Least Squares Estimators

 Solution to the normal equations are often difficult to obtain
analytically

 Numerical Algorithms
* For example, Gauss-Newton
* Require initial values to initialize numerical procedures



Gauss-Newton

e Defaultin PROC NLIN and nls ()

» Approximate the nonlinear model with linear terms

 Taylor series expansion and least squares as for linear regression
- Denote the least squares estimates g and the initial values g =(g{”,g{”.---.a%)

« Approximation around starting values:

f(Xi,O)z f(xi’g(O))+pzl|:af6(2:0):| ()(9k _9|EO))
0=g"’

k=0
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Gauss-Newton

Model approximation

p-1 af XI,O (0)
B (Xi’g(O)) { )l © (69
=g

k=0

It is a linear model!

Update: g% =g 4+ p®

Estimate parameters by least squares: p® = (D(O)TD(O) )_



Gauss-Newton

n 2

 Evaluation criteria: SSE(°)=Z(Yi— f,)
e Start the process again with 9" as the initial values
« Repeat procedure until SSE*™ —SSE® s negligible

0 2
e Estimate of error’s variance: MSE=)|Y,—f(x,0)] [n-p
i=1

* Other methods available, e.g. Nelder-Mead and Marquardt



Compartmental Models

* Traditionally used in nutritional modeling
* Roots on pharmacokinetics and differential calculus

Drugin Gut Ka Blood K

Compartment ] Compartment




Compartmental Models

* Functional forms described in terms of differential equations
* |nstead of the “integrated form”

* Strategy for parameter estimation
* Expected mean represented by a compartmental model f

* If f cannot be obtained analytically, it has to be solved numerically
* Euler, Runge-Kutta4, Isoda

* Can use nonlinear least squares but have to numerically solve f at iteration
* Modern software estimate using maximum likelihood



Maximum Likelihood Estimation

* Another strategy for parameter estimation

* For regression models with independent ¢ ~N(0,6%) , estimators
coincide with least squares estimators

e Estimators maximize the likelihood function
* Parameter values that are in best agreement with the data



Maximum Likelihood Estimation
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* p(y|uo®) isthe density function: How likely y is at each value

 The likelihood function is: L( 0% 1Yy ¥y)=p(Yi 1 0%)x .. xp(y, |1 0°)
— “How likely the whole data is with that set of parameters values”
— MLE: “maximize the likelihood of getting the observed data”



Maximum Likelihood Estimation

* Linear Regression Example: Y, = g, + Bx + ¢

L(ﬂo’ﬁl’az | Y- Yn):(\/;?j exr{_ 2;2 iZ(yi - by _ﬁlxi)2:|

* It is easier to work with the log-likelihood

12 Z(Yi _ﬁo_ﬁlxi)z

log L(,Bo,,Bl,U2 | Vireees yn) =—g|09(2”)_g|09(02)_ 252 4

* To find parameters that maximize the likelihood we...

* Take the derivative with respect to each parameter and set to zero. Also need
second derivative test



Mixed Models

* Modern mixed modeling relies heavily on likelihood methods
e Extension of (non)linear models with both fixed and random effects

* Probably the “type” of model you need to analyze your data or
construct your nutrition model

* There’s a whole workshop on mixed models in this meeting



Nonlinear Mixed Models

* Nonlinear functional forms
* Michaelis-Menten, logistic, exponential, Gompertz, ...

 Random effects that “enter the model” nonlinearly

* Allow you to model nonlinear clustered, logitudinal data
* Records from the same animal, treatment means from the same study



Nonlinear Mixed Models

Yii = f (Xij’ﬂi)

* Vjj is the jth record on the ith “subject” or cluster

* Xjj Is the associated predictor variable

* 0, is the vector of subject specific parameters

0i=p+Db
e

b; ~ N(O, )

“Fixed”

“Random”

* g is the random error ~ N(0, ¢2)



Nonlinear MM Maximum Likelihood

* There is more than one source of variability
* Between subjects and within subjects

* To represent the generative process of the data we need to take both
Into account

* Joint density of the response and the random effects



Maximum Likelihood

* Forthe linear regression

ply)
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* The likelihood functionis: L(u o? |y, y,)=p(y, 1, 0%)x ... xp(y, | c?)

* For the nonlinear mixed model, we need to compute the marginal density
of the responses: p(y”},gz,‘l’):j p(y|b.B.c%)p(b|'¥)db



Maximum Likelihood

* Bad news from a estimation perspective

* The likelihood function to estimate the parameters requires integrating the
joint density with respect to the random effects

* The integral often does not have a closed form expression

* Approximation of the likelihood function



Exercise

* Let’s go back to the compartmental model

dy; =-K.V, * Yy, is the amount of drug in the gut compartment

3 dt * Y, is the amount of drug in the blood compartment
% =k.y, —k.y, * k, is the absorption rate (1/hr)

| dx .

K, is the elimination rate (1/hr)



Exercise

e Data from Davidian and Giltinan (1995)

* 12 subjects received a single oral dose of theophylline

e Anti-asthmatic drug
* Single oral dose at time zero

* Measurements of blood concentrations of drug at 11 time points over
a 25 hour period



Exercise

Concentration (mg / L)

Time (hr)

32



Exercise

* We only observe data from the second compartment

* The differential equation for the second compartment can actually be
solved analytically

* We will estimate the parameters in two different ways
* Analytical solutions: nonlinear mixed model
* Numerical solutions for differential equations in a mixed model framework



Exercise

* The analytical solution to the second differential equation is
Dose k,

Gk~ ::) exp(—k.t)—exp(—k,t) ]

 As a nhonlinear mixed model

C(t) =

Dose, k.K,
C; = SACRETS exp(—kt; ) —exp(k,t; ) |+ &

& ~N(0,0°) and {EI}NLBHGO "OD



Exercise

* All three parameters must be positive

* Reparameterize model with parameters on a log scale

Dose exp(lk, + Ik, —ICI)
exp(lk,)—exp(lk,)

C(t) = {exp[—exp(lke)t]—exp[—exp(lka)t}}

where

lk, =log(k,) , Ik, =log(k,) and ICI=1log(Cl)



Exercise

* First method
* Fit nonlinear mixed model in R



Exercise

* Second method

* Nonlinear mixed model but solve differential equations numerically: Isoda
solver
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* Observation Equation: C(t)= Yal )k




Bayesian Inference

* Combines prior information with new data: update of knowledge

* All parameters are treated as random variables
* Prior distributions for parameters
* Inference is based on the posterior distribution

* Bayes theorem Prior: beta(52.22,9.52); Data: B(50,25); Posterior: beta(77.22,34.52)
w - === Prior
oC = Likelihoo
p (9 | y) ( ) (O | y 2 97 == Ilz’gatlerliord
/ \ \ 5 < /\
Posterior Prior Data o - | e et el W

theta

From: https://www.r-bloggers.com/the-beta-prior-likelihood-and-posterior/



Bayesian Inference

* Inference based on posterior
* Combines prior information with the observed data

Particularly suited for models built with many parameters that good biological
knowledge is available

Many freely software available

Including with differential equations “solvers”

We don’t have to have a known or tractable posterior: Markov Chain Monte
Carlo (MCMC)



Example of a Multivariate Nonlinear Model

* From Strathe et al. (2012). J. Agri. Sci. 150:764-774

---------------------------

Courtesy of A. B. Strathe and adapted after van Milgen and Noblet (1999)



Example for a Multivariate Nonlinear Model

BW -exp(l
PD _ PDmaX BW . IOQ( PDmax p( )]
Multivariate Model: BWop e BW

LD =k, (ME—a -BW"-PD/k,)

Priors from literature

partial efticiencies k, and kg

Credible Intervals for the Posterior

k k, Reference
0-72-0-88  0-52-0-63  Strathe et al. (2010a)*
0-75 0-56 van Milgen et al. (2000)* b 060 (0-56-0-66) 0-61 (O
0-77-0-82 0-58-0-60  van Milgen & Noblet (1999)* ,ﬁ;p 0-59 (0-53-0-65) 0-58 (0O
0-84 0-62 Noblet et al. (1999)t i 78 (0.7 (). 85 s
0-76 0-54 NRC (1998)t i 0-78 (0-72-0-85) 0-76 (0
0-60 0-52 Tess et al. (1984)t
0-74 0-5¢ ARC (1981)t . e
’ S From Strathe et al. (2012). J. Agri. Sci. 150:764-774

* Partial efficienciesz erived from multivariate modelling 5

K, ~hbi:60, 6.16°) "and "}~ N [6.80,010?)
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