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Outline

• Nutrition models are VERY diverse
• Combination of empirical, mechanistic, dynamic and static models

• Regression, linear and nonlinear mixed models, differential equations 

• Today: Main approaches for estimating parameters in a variety of models
• Some mathematical description

• Idea is for you to understand the reasoning and challenges of different approaches

• One exercise/demonstration in the end
• Fit model with two approaches  
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Introduction

• Different types of models have been used for nutrition modeling
• Compartmental, regression, meta-analysis, nonlinear mixed models, …..

• One feature is common to almost all these models
• Parameters are needed to describe the system

• Quantify relationship between variables
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Introduction

• Simple example: linear regression 0 1i i iY x    
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• Yi is the response variable for the ith observation
• xi is the predictor variable in the ith observation
• β0 is the intercept
• β1 is the slope

• εi is the error, E[εi] = 0, Var[εi] = σ2  and εi are independent
• i = 1, …, n

In matrix notation:   y Xβ ε
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Introduction
• In practice, parameter true values are unknown

• Estimators from a sample

• Parameters have to be optimal in some sense
• Least square estimators minimize squared errors

• Maximum likelihood estimators maximize the likelihood function
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Least Squares Estimators
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Least Square Estimators

• The least squares estimators minimize the square errors:

• How do we get them???

• We can find points of minimum and maximum of a function using derivatives. 

For example for f (x) = 160x – 16x2
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Set derivative to zero and “solve” for x: 

160 – 32x = 0 

x = 5

Second derivative test: −32



Least Squares Estimators
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Setting these partial derivatives to zero, we construct the normal equations
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Least Squares Estimators

• The least square estimators are the solutions to the normal equations

• The concept extends to multiple regression

• General form of the least squares estimators: 
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Least Squares Estimators

• Estimates of the uncertainty associated with these parameters

• Estimator of the error’s variance

• Estimated variance-covariance matrix of the parameters
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Nonlinear Models

• So far, we can estimate parameters in linear models

• Many phenomena in biology are nonlinear
• For example, reaction velocity vs. substrate concentration in an enzymatic reaction 

• Before we start with nonlinear models, let’s clarify

is a nonlinear model

is a linear model
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Nonlinear Models
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Nonlinear Regression
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f is the nonlinear function describing the relationship between Y and x

Michaelis-Menten example: max i
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• yi is the reaction rate for the ith observation

• xi is the associated substrate concentration

are the parameters to be estimated

• εi is the error, E[εi] = 0, Var[εi] = σ2 and independent

• i = 1, …, n
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Least Squares Estimators

• For the simple linear regression model, least squares minimize

• For the nonlinear regression, the idea is the same: minimize
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Least Squares Estimators

• Solution to the normal equations are often difficult to obtain 
analytically

• Numerical Algorithms
• For example, Gauss-Newton 

• Require initial values to initialize numerical procedures
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Gauss-Newton

• Default in PROC NLIN and nls()

• Approximate the nonlinear model with linear terms

• Taylor series expansion and least squares as for linear regression

• Denote the least squares estimates g and the initial values

• Approximation around starting values:  
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Gauss-Newton

• Model approximation

• It is a linear model!

• Estimate parameters by least squares:

• Update:  
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Gauss-Newton

• Evaluation criteria:

• Start the process again with        as the initial values

• Repeat procedure until                          is negligible   

• Estimate of error’s variance: 

• Other methods available, e.g. Nelder-Mead and Marquardt
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Compartmental Models

• Traditionally used in nutritional modeling
• Roots on pharmacokinetics and differential calculus
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Compartmental Models

• Functional forms described in terms of differential equations
• Instead of the “integrated form”

• Strategy for parameter estimation
• Expected mean represented by a compartmental model  f

• If  f cannot be obtained analytically, it has to be solved numerically 
• Euler, Runge-Kutta4, lsoda

• Can use nonlinear least squares but have to numerically solve f at iteration

• Modern software estimate using maximum likelihood 
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Maximum Likelihood Estimation

• Another strategy for parameter estimation 

• For regression models with independent                     , estimators 
coincide with least squares estimators

• Estimators maximize the likelihood function
• Parameter values that are in best agreement with the data

21

 2~ 0,i N 



Maximum Likelihood Estimation
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• p (y | μ σ2) is the density function: How likely y is at each value 

• The likelihood function is: 
– “How likely the whole data is with that set of parameters values”

– MLE: “maximize the likelihood of getting the observed data”
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Maximum Likelihood Estimation

• Linear Regression Example:

• It is easier to work with the log-likelihood

• To find parameters that maximize the likelihood we…
• Take the derivative with respect to each parameter and set to zero. Also need 

second derivative test
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Mixed Models

• Modern mixed modeling relies heavily on likelihood methods

• Extension of (non)linear models with both fixed and random effects

• Probably the “type” of model you need to analyze your data or 
construct your nutrition model

• There’s a whole workshop on mixed models in this meeting
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Nonlinear Mixed Models

• Nonlinear functional forms
• Michaelis-Menten, logistic, exponential, Gompertz, …

• Random effects that “enter the model” nonlinearly

• Allow you to model nonlinear clustered, logitudinal data 
• Records from the same animal, treatment means from the same study
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Nonlinear Mixed Models

• yij is the jth record on the ith “subject” or cluster

• xij is the associated predictor variable

• θi is the vector of subject specific parameters

θi = β + bi                 bi ~ N(0, Ψ)

• εij is the random error ~ N(0, σ2)
26
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Nonlinear MM Maximum Likelihood  

• There is more than one source of variability
• Between subjects and within subjects

• To represent the generative process of the data we need to take both 
into account
• Joint density of the response and the random effects
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Maximum Likelihood
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• For the linear regression

• The likelihood function is:

• For the nonlinear mixed model, we need to compute the marginal density 
of the responses: 
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Maximum Likelihood

• Bad news from a estimation perspective

• The likelihood function to estimate the parameters requires integrating the 
joint density with respect to the random effects

• The integral often does not have a closed form expression

• Approximation of the likelihood function
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Exercise

• Let’s go back to the compartmental model
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• y1 is the amount of drug in the gut compartment
• y2 is the amount of drug in the blood compartment
• ka is the absorption rate (1/hr)
• ke is the elimination rate (1/hr)



Exercise

• Data from Davidian and Giltinan (1995)

• 12 subjects received a single oral dose of theophylline
• Anti-asthmatic drug

• Single oral dose at time zero

• Measurements of blood concentrations of drug at 11 time points over 
a 25 hour period
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Exercise
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Exercise

• We only observe data from the second compartment

• The differential equation for the second compartment can actually be 
solved analytically

• We will estimate the parameters in two different ways
• Analytical solutions: nonlinear mixed model

• Numerical solutions for differential equations in a mixed model framework
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Exercise

• The analytical solution to the second differential equation is

• As a nonlinear mixed model
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Exercise

• All three parameters must be positive

• Reparameterize model with parameters on a log scale

where 
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Exercise

• First method
• Fit nonlinear mixed model in R
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Exercise

• Second method
• Nonlinear mixed model but solve differential equations numerically: lsoda

solver

• Observation Equation: 
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Bayesian Inference

• Combines prior information with new data: update of knowledge

• All parameters are treated as random variables
• Prior distributions for parameters

• Inference is based on the posterior distribution

• Bayes theorem
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Bayesian Inference

• Inference based on posterior
• Combines prior information with the observed data

• Particularly suited for models built with many parameters that good biological 
knowledge is available

• Many freely software available

• Including with differential equations “solvers” 

• We don’t have to have a known or tractable posterior: Markov Chain Monte 
Carlo (MCMC)
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Example of a Multivariate Nonlinear Model

• From Strathe et al. (2012). J. Agri. Sci. 150:764-774
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Example for a Multivariate Nonlinear Model
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