

Leaning objectives

Define what are dynamic deterministic models and explain why they are popular

- Write a model using compartmental model diagram
- Translate a model diagram into set of differential equations
- Explain different approaches for solving model equations

Construct a model of rumen fermentation in Excel

Dynamic deterministic models

Motivation

Most mechanistic models are this type

- Used to represent almost any
 - biological system
 - Rumen
 - Mammary gland
 - Whole animal

Dynamic deterministic models

- □Principle
 - Represent biological system as set of state variables
 - Simulate how these variables change over time

Dynamic deterministic models

Example

- Biological system
 - Rumen
- State variables
 - Protein
 - Starch
 - Fiber

Simulation

Change in nutrient pools over feeding cycle

Representation

Formally written using differential equations

Easy to visualize with compartmental model diagrams first

Rectangle = state variable (pool) Arrows = inputs and outputs (fluxes)

Example

Fiber pool in rumen

Need defined inputs and outputs
 Functions of parameters
 Example: Passage

 $Passage(kg h^{-1}) = rate constant(h^{-1}) \times pool size (kg)$

$$F_{F,P} = k_{F,P} \times Q_F$$
Fiber
$$(Q_F)$$

$$\int_{=k_{F,P} \times Q_F} F_{F,P}$$
Passed (P)

Multiple pools connected (usually)

Differential equations

Written from compartmental modeling diagram

Define change in state variables (pools) over time

$$\frac{d(State \ variable)}{dt} = Inputs - Outputs$$

Differential equations

Example

- Equations need to be solved to generate predictions
- Simple models have analytical solutions
 Complex models have numerical solutions only

Analytical solution Integrate using rules taught in calculus courses

Make predictions by evaluating this expression at any time t

Numerical solution

 Integrate by calculating value numerically over short time intervals (Δt)
 Done with difference equations

$$Q(t + \Delta t) \approx Q(t) + \frac{dQ(t)}{dt} \times \Delta t$$

Numerical solutionExample

Numerical solutionMethods

Euler

- Method just shown
- Easy to implement by hand in Excel or other spreadsheet
- Relatively high error

Numerical solution

Methods

Euler

Runge-Kutta

- Similar to method shown, but uses difference equations with more terms
- Need specialized software (Vensim, R, acsIX) to implement
- Relatively low error

Solution

Steady state

- Reached when value of state variables no longer change
- Predictions reported for many models are at steady state

Demonstration

- We will construct and use a simple (one-pool) model of rumen fermentation in Excel
- □Hands-on

You will construct and use your own, multipool model

(a) Find the steady-state solution for the pool size of indigestible fiber (Q_{IF}). Do this by coding in the difference equation in column H.

(b) Using cell D10, change $k_{DF,SC}$ from 0.05 to 0.1 h⁻¹. Which pool sizes change and why?

(c) Using cell D22, change the time step (Δt) to 0.01. Why do pool sizes change at steady state? Is the system really at steady state?

(d) Using cells M39 to M42, calculate $F_{SC,D}/(F_{SC,D}+F_{IF,P}+F_{DF,P}+F_{SC,P})$. What does this value represent?

Take home materials

□ Model in Vensim and R

Files available at hackmannlab.org

Take home messages

- Dynamic deterministic models are the classic mechanistic model
- They are formulated by drawing a compartmental diagram, then translating the diagram into differential equations
- Equations are usually solved numerically
- Simple models can be implemented in Excel, but more complex models require specialized software
- Solution requires parameter values to be defined

Acknowledgements

People

- University of Florida
 - Mariana Garcia
 - Tayler Hansen
 - Halima Sultana
 - Junyi Tao
- Virginia Tech
 - Mark Hanigan

Visit us at hackmannlab.org

Take home messages

- Dynamic deterministic models are the classic mechanistic model
- They are formulated by drawing a compartmental diagram, then translating the diagram into differential equations
- Equations are usually solved numerically
- Simple models can be implemented in Excel, but more complex models require specialized software
- Solution requires parameter values to be defined